\(\int \arctan (\sqrt {x}) \, dx\) [95]

   Optimal result
   Rubi [A] (verified)
   Mathematica [A] (verified)
   Maple [A] (verified)
   Fricas [A] (verification not implemented)
   Sympy [A] (verification not implemented)
   Maxima [A] (verification not implemented)
   Giac [A] (verification not implemented)
   Mupad [B] (verification not implemented)

Optimal result

Integrand size = 6, antiderivative size = 22 \[ \int \arctan \left (\sqrt {x}\right ) \, dx=-\sqrt {x}+\arctan \left (\sqrt {x}\right )+x \arctan \left (\sqrt {x}\right ) \]

[Out]

arctan(x^(1/2))+x*arctan(x^(1/2))-x^(1/2)

Rubi [A] (verified)

Time = 0.01 (sec) , antiderivative size = 22, normalized size of antiderivative = 1.00, number of steps used = 4, number of rules used = 4, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.667, Rules used = {4930, 52, 65, 209} \[ \int \arctan \left (\sqrt {x}\right ) \, dx=x \arctan \left (\sqrt {x}\right )+\arctan \left (\sqrt {x}\right )-\sqrt {x} \]

[In]

Int[ArcTan[Sqrt[x]],x]

[Out]

-Sqrt[x] + ArcTan[Sqrt[x]] + x*ArcTan[Sqrt[x]]

Rule 52

Int[((a_.) + (b_.)*(x_))^(m_)*((c_.) + (d_.)*(x_))^(n_), x_Symbol] :> Simp[(a + b*x)^(m + 1)*((c + d*x)^n/(b*(
m + n + 1))), x] + Dist[n*((b*c - a*d)/(b*(m + n + 1))), Int[(a + b*x)^m*(c + d*x)^(n - 1), x], x] /; FreeQ[{a
, b, c, d}, x] && NeQ[b*c - a*d, 0] && GtQ[n, 0] && NeQ[m + n + 1, 0] &&  !(IGtQ[m, 0] && ( !IntegerQ[n] || (G
tQ[m, 0] && LtQ[m - n, 0]))) &&  !ILtQ[m + n + 2, 0] && IntLinearQ[a, b, c, d, m, n, x]

Rule 65

Int[((a_.) + (b_.)*(x_))^(m_)*((c_.) + (d_.)*(x_))^(n_), x_Symbol] :> With[{p = Denominator[m]}, Dist[p/b, Sub
st[Int[x^(p*(m + 1) - 1)*(c - a*(d/b) + d*(x^p/b))^n, x], x, (a + b*x)^(1/p)], x]] /; FreeQ[{a, b, c, d}, x] &
& NeQ[b*c - a*d, 0] && LtQ[-1, m, 0] && LeQ[-1, n, 0] && LeQ[Denominator[n], Denominator[m]] && IntLinearQ[a,
b, c, d, m, n, x]

Rule 209

Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> Simp[(1/(Rt[a, 2]*Rt[b, 2]))*ArcTan[Rt[b, 2]*(x/Rt[a, 2])], x] /;
 FreeQ[{a, b}, x] && PosQ[a/b] && (GtQ[a, 0] || GtQ[b, 0])

Rule 4930

Int[((a_.) + ArcTan[(c_.)*(x_)^(n_.)]*(b_.))^(p_.), x_Symbol] :> Simp[x*(a + b*ArcTan[c*x^n])^p, x] - Dist[b*c
*n*p, Int[x^n*((a + b*ArcTan[c*x^n])^(p - 1)/(1 + c^2*x^(2*n))), x], x] /; FreeQ[{a, b, c, n}, x] && IGtQ[p, 0
] && (EqQ[n, 1] || EqQ[p, 1])

Rubi steps \begin{align*} \text {integral}& = x \arctan \left (\sqrt {x}\right )-\frac {1}{2} \int \frac {\sqrt {x}}{1+x} \, dx \\ & = -\sqrt {x}+x \arctan \left (\sqrt {x}\right )+\frac {1}{2} \int \frac {1}{\sqrt {x} (1+x)} \, dx \\ & = -\sqrt {x}+x \arctan \left (\sqrt {x}\right )+\text {Subst}\left (\int \frac {1}{1+x^2} \, dx,x,\sqrt {x}\right ) \\ & = -\sqrt {x}+\arctan \left (\sqrt {x}\right )+x \arctan \left (\sqrt {x}\right ) \\ \end{align*}

Mathematica [A] (verified)

Time = 0.01 (sec) , antiderivative size = 18, normalized size of antiderivative = 0.82 \[ \int \arctan \left (\sqrt {x}\right ) \, dx=-\sqrt {x}+(1+x) \arctan \left (\sqrt {x}\right ) \]

[In]

Integrate[ArcTan[Sqrt[x]],x]

[Out]

-Sqrt[x] + (1 + x)*ArcTan[Sqrt[x]]

Maple [A] (verified)

Time = 0.02 (sec) , antiderivative size = 17, normalized size of antiderivative = 0.77

method result size
derivativedivides \(\arctan \left (\sqrt {x}\right )+x \arctan \left (\sqrt {x}\right )-\sqrt {x}\) \(17\)
default \(\arctan \left (\sqrt {x}\right )+x \arctan \left (\sqrt {x}\right )-\sqrt {x}\) \(17\)
parts \(\arctan \left (\sqrt {x}\right )+x \arctan \left (\sqrt {x}\right )-\sqrt {x}\) \(17\)
meijerg \(-\sqrt {x}+\frac {\left (3 x +3\right ) \arctan \left (\sqrt {x}\right )}{3}\) \(18\)

[In]

int(arctan(x^(1/2)),x,method=_RETURNVERBOSE)

[Out]

arctan(x^(1/2))+x*arctan(x^(1/2))-x^(1/2)

Fricas [A] (verification not implemented)

none

Time = 0.24 (sec) , antiderivative size = 14, normalized size of antiderivative = 0.64 \[ \int \arctan \left (\sqrt {x}\right ) \, dx={\left (x + 1\right )} \arctan \left (\sqrt {x}\right ) - \sqrt {x} \]

[In]

integrate(arctan(x^(1/2)),x, algorithm="fricas")

[Out]

(x + 1)*arctan(sqrt(x)) - sqrt(x)

Sympy [A] (verification not implemented)

Time = 0.45 (sec) , antiderivative size = 19, normalized size of antiderivative = 0.86 \[ \int \arctan \left (\sqrt {x}\right ) \, dx=- \sqrt {x} + x \operatorname {atan}{\left (\sqrt {x} \right )} + \operatorname {atan}{\left (\sqrt {x} \right )} \]

[In]

integrate(atan(x**(1/2)),x)

[Out]

-sqrt(x) + x*atan(sqrt(x)) + atan(sqrt(x))

Maxima [A] (verification not implemented)

none

Time = 0.28 (sec) , antiderivative size = 16, normalized size of antiderivative = 0.73 \[ \int \arctan \left (\sqrt {x}\right ) \, dx=x \arctan \left (\sqrt {x}\right ) - \sqrt {x} + \arctan \left (\sqrt {x}\right ) \]

[In]

integrate(arctan(x^(1/2)),x, algorithm="maxima")

[Out]

x*arctan(sqrt(x)) - sqrt(x) + arctan(sqrt(x))

Giac [A] (verification not implemented)

none

Time = 0.28 (sec) , antiderivative size = 16, normalized size of antiderivative = 0.73 \[ \int \arctan \left (\sqrt {x}\right ) \, dx=x \arctan \left (\sqrt {x}\right ) - \sqrt {x} + \arctan \left (\sqrt {x}\right ) \]

[In]

integrate(arctan(x^(1/2)),x, algorithm="giac")

[Out]

x*arctan(sqrt(x)) - sqrt(x) + arctan(sqrt(x))

Mupad [B] (verification not implemented)

Time = 0.06 (sec) , antiderivative size = 16, normalized size of antiderivative = 0.73 \[ \int \arctan \left (\sqrt {x}\right ) \, dx=\mathrm {atan}\left (\sqrt {x}\right )+x\,\mathrm {atan}\left (\sqrt {x}\right )-\sqrt {x} \]

[In]

int(atan(x^(1/2)),x)

[Out]

atan(x^(1/2)) + x*atan(x^(1/2)) - x^(1/2)