\(\int \frac {x}{(1+x)^2} \, dx\) [125]

   Optimal result
   Rubi [A] (verified)
   Mathematica [A] (verified)
   Maple [A] (verified)
   Fricas [A] (verification not implemented)
   Sympy [A] (verification not implemented)
   Maxima [A] (verification not implemented)
   Giac [A] (verification not implemented)
   Mupad [B] (verification not implemented)

Optimal result

Integrand size = 7, antiderivative size = 10 \[ \int \frac {x}{(1+x)^2} \, dx=\frac {1}{1+x}+\log (1+x) \]

[Out]

1/(1+x)+ln(1+x)

Rubi [A] (verified)

Time = 0.00 (sec) , antiderivative size = 10, normalized size of antiderivative = 1.00, number of steps used = 2, number of rules used = 1, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.143, Rules used = {45} \[ \int \frac {x}{(1+x)^2} \, dx=\frac {1}{x+1}+\log (x+1) \]

[In]

Int[x/(1 + x)^2,x]

[Out]

(1 + x)^(-1) + Log[1 + x]

Rule 45

Int[((a_.) + (b_.)*(x_))^(m_.)*((c_.) + (d_.)*(x_))^(n_.), x_Symbol] :> Int[ExpandIntegrand[(a + b*x)^m*(c + d
*x)^n, x], x] /; FreeQ[{a, b, c, d, n}, x] && NeQ[b*c - a*d, 0] && IGtQ[m, 0] && ( !IntegerQ[n] || (EqQ[c, 0]
&& LeQ[7*m + 4*n + 4, 0]) || LtQ[9*m + 5*(n + 1), 0] || GtQ[m + n + 2, 0])

Rubi steps \begin{align*} \text {integral}& = \int \left (-\frac {1}{(1+x)^2}+\frac {1}{1+x}\right ) \, dx \\ & = \frac {1}{1+x}+\log (1+x) \\ \end{align*}

Mathematica [A] (verified)

Time = 0.00 (sec) , antiderivative size = 10, normalized size of antiderivative = 1.00 \[ \int \frac {x}{(1+x)^2} \, dx=\frac {1}{1+x}+\log (1+x) \]

[In]

Integrate[x/(1 + x)^2,x]

[Out]

(1 + x)^(-1) + Log[1 + x]

Maple [A] (verified)

Time = 0.03 (sec) , antiderivative size = 11, normalized size of antiderivative = 1.10

method result size
default \(\frac {1}{1+x}+\ln \left (1+x \right )\) \(11\)
norman \(\frac {1}{1+x}+\ln \left (1+x \right )\) \(11\)
risch \(\frac {1}{1+x}+\ln \left (1+x \right )\) \(11\)
meijerg \(-\frac {x}{1+x}+\ln \left (1+x \right )\) \(14\)
parallelrisch \(\frac {\ln \left (1+x \right ) x +1+\ln \left (1+x \right )}{1+x}\) \(19\)

[In]

int(x/(1+x)^2,x,method=_RETURNVERBOSE)

[Out]

1/(1+x)+ln(1+x)

Fricas [A] (verification not implemented)

none

Time = 0.23 (sec) , antiderivative size = 16, normalized size of antiderivative = 1.60 \[ \int \frac {x}{(1+x)^2} \, dx=\frac {{\left (x + 1\right )} \log \left (x + 1\right ) + 1}{x + 1} \]

[In]

integrate(x/(1+x)^2,x, algorithm="fricas")

[Out]

((x + 1)*log(x + 1) + 1)/(x + 1)

Sympy [A] (verification not implemented)

Time = 0.03 (sec) , antiderivative size = 8, normalized size of antiderivative = 0.80 \[ \int \frac {x}{(1+x)^2} \, dx=\log {\left (x + 1 \right )} + \frac {1}{x + 1} \]

[In]

integrate(x/(1+x)**2,x)

[Out]

log(x + 1) + 1/(x + 1)

Maxima [A] (verification not implemented)

none

Time = 0.19 (sec) , antiderivative size = 10, normalized size of antiderivative = 1.00 \[ \int \frac {x}{(1+x)^2} \, dx=\frac {1}{x + 1} + \log \left (x + 1\right ) \]

[In]

integrate(x/(1+x)^2,x, algorithm="maxima")

[Out]

1/(x + 1) + log(x + 1)

Giac [A] (verification not implemented)

none

Time = 0.29 (sec) , antiderivative size = 11, normalized size of antiderivative = 1.10 \[ \int \frac {x}{(1+x)^2} \, dx=\frac {1}{x + 1} + \log \left ({\left | x + 1 \right |}\right ) \]

[In]

integrate(x/(1+x)^2,x, algorithm="giac")

[Out]

1/(x + 1) + log(abs(x + 1))

Mupad [B] (verification not implemented)

Time = 0.03 (sec) , antiderivative size = 10, normalized size of antiderivative = 1.00 \[ \int \frac {x}{(1+x)^2} \, dx=\ln \left (x+1\right )+\frac {1}{x+1} \]

[In]

int(x/(x + 1)^2,x)

[Out]

log(x + 1) + 1/(x + 1)