\(\int e^{\frac {1}{t}} \, dt\) [161]

   Optimal result
   Rubi [A] (verified)
   Mathematica [A] (verified)
   Maple [A] (verified)
   Fricas [A] (verification not implemented)
   Sympy [A] (verification not implemented)
   Maxima [A] (verification not implemented)
   Giac [A] (verification not implemented)
   Mupad [B] (verification not implemented)

Optimal result

Integrand size = 5, antiderivative size = 14 \[ \int e^{\frac {1}{t}} \, dt=e^{\frac {1}{t}} t-\operatorname {ExpIntegralEi}\left (\frac {1}{t}\right ) \]

[Out]

exp(1/t)*t-Ei(1/t)

Rubi [A] (verified)

Time = 0.01 (sec) , antiderivative size = 14, normalized size of antiderivative = 1.00, number of steps used = 2, number of rules used = 2, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.400, Rules used = {2237, 2241} \[ \int e^{\frac {1}{t}} \, dt=e^{\frac {1}{t}} t-\operatorname {ExpIntegralEi}\left (\frac {1}{t}\right ) \]

[In]

Int[E^t^(-1),t]

[Out]

E^t^(-1)*t - ExpIntegralEi[t^(-1)]

Rule 2237

Int[(F_)^((a_.) + (b_.)*((c_.) + (d_.)*(x_))^(n_)), x_Symbol] :> Simp[(c + d*x)*(F^(a + b*(c + d*x)^n)/d), x]
- Dist[b*n*Log[F], Int[(c + d*x)^n*F^(a + b*(c + d*x)^n), x], x] /; FreeQ[{F, a, b, c, d}, x] && IntegerQ[2/n]
 && ILtQ[n, 0]

Rule 2241

Int[(F_)^((a_.) + (b_.)*((c_.) + (d_.)*(x_))^(n_))/((e_.) + (f_.)*(x_)), x_Symbol] :> Simp[F^a*(ExpIntegralEi[
b*(c + d*x)^n*Log[F]]/(f*n)), x] /; FreeQ[{F, a, b, c, d, e, f, n}, x] && EqQ[d*e - c*f, 0]

Rubi steps \begin{align*} \text {integral}& = e^{\frac {1}{t}} t+\int \frac {e^{\frac {1}{t}}}{t} \, dt \\ & = e^{\frac {1}{t}} t-\operatorname {ExpIntegralEi}\left (\frac {1}{t}\right ) \\ \end{align*}

Mathematica [A] (verified)

Time = 0.00 (sec) , antiderivative size = 14, normalized size of antiderivative = 1.00 \[ \int e^{\frac {1}{t}} \, dt=e^{\frac {1}{t}} t-\operatorname {ExpIntegralEi}\left (\frac {1}{t}\right ) \]

[In]

Integrate[E^t^(-1),t]

[Out]

E^t^(-1)*t - ExpIntegralEi[t^(-1)]

Maple [A] (verified)

Time = 0.04 (sec) , antiderivative size = 15, normalized size of antiderivative = 1.07

method result size
derivativedivides \({\mathrm e}^{\frac {1}{t}} t +\operatorname {Ei}_{1}\left (-\frac {1}{t}\right )\) \(15\)
default \({\mathrm e}^{\frac {1}{t}} t +\operatorname {Ei}_{1}\left (-\frac {1}{t}\right )\) \(15\)
risch \({\mathrm e}^{\frac {1}{t}} t +\operatorname {Ei}_{1}\left (-\frac {1}{t}\right )\) \(15\)
meijerg \(t +1+\ln \left (t \right )-i \pi -\frac {t \left (2+\frac {2}{t}\right )}{2}+{\mathrm e}^{\frac {1}{t}} t +\ln \left (-\frac {1}{t}\right )+\operatorname {Ei}_{1}\left (-\frac {1}{t}\right )\) \(39\)

[In]

int(exp(1/t),t,method=_RETURNVERBOSE)

[Out]

exp(1/t)*t+Ei(1,-1/t)

Fricas [A] (verification not implemented)

none

Time = 0.23 (sec) , antiderivative size = 13, normalized size of antiderivative = 0.93 \[ \int e^{\frac {1}{t}} \, dt=t e^{\frac {1}{t}} - {\rm Ei}\left (\frac {1}{t}\right ) \]

[In]

integrate(exp(1/t),t, algorithm="fricas")

[Out]

t*e^(1/t) - Ei(1/t)

Sympy [A] (verification not implemented)

Time = 0.62 (sec) , antiderivative size = 10, normalized size of antiderivative = 0.71 \[ \int e^{\frac {1}{t}} \, dt=t e^{\frac {1}{t}} - \operatorname {Ei}{\left (\frac {1}{t} \right )} \]

[In]

integrate(exp(1/t),t)

[Out]

t*exp(1/t) - Ei(1/t)

Maxima [A] (verification not implemented)

none

Time = 0.21 (sec) , antiderivative size = 9, normalized size of antiderivative = 0.64 \[ \int e^{\frac {1}{t}} \, dt=-\Gamma \left (-1, -\frac {1}{t}\right ) \]

[In]

integrate(exp(1/t),t, algorithm="maxima")

[Out]

-gamma(-1, -1/t)

Giac [A] (verification not implemented)

none

Time = 0.25 (sec) , antiderivative size = 18, normalized size of antiderivative = 1.29 \[ \int e^{\frac {1}{t}} \, dt=-t {\left (\frac {{\rm Ei}\left (\frac {1}{t}\right )}{t} - e^{\frac {1}{t}}\right )} \]

[In]

integrate(exp(1/t),t, algorithm="giac")

[Out]

-t*(Ei(1/t)/t - e^(1/t))

Mupad [B] (verification not implemented)

Time = 0.02 (sec) , antiderivative size = 9, normalized size of antiderivative = 0.64 \[ \int e^{\frac {1}{t}} \, dt=t\,\mathrm {expint}\left (2,-\frac {1}{t}\right ) \]

[In]

int(exp(1/t),t)

[Out]

t*expint(2, -1/t)