\(\int \frac {x}{1+x^3} \, dx\) [16]

   Optimal result
   Rubi [A] (verified)
   Mathematica [A] (verified)
   Maple [A] (verified)
   Fricas [A] (verification not implemented)
   Sympy [A] (verification not implemented)
   Maxima [A] (verification not implemented)
   Giac [A] (verification not implemented)
   Mupad [B] (verification not implemented)

Optimal result

Integrand size = 9, antiderivative size = 41 \[ \int \frac {x}{1+x^3} \, dx=-\frac {\arctan \left (\frac {1-2 x}{\sqrt {3}}\right )}{\sqrt {3}}-\frac {1}{3} \log (1+x)+\frac {1}{6} \log \left (1-x+x^2\right ) \]

[Out]

-1/3*ln(1+x)+1/6*ln(x^2-x+1)-1/3*arctan(1/3*(1-2*x)*3^(1/2))*3^(1/2)

Rubi [A] (verified)

Time = 0.02 (sec) , antiderivative size = 41, normalized size of antiderivative = 1.00, number of steps used = 6, number of rules used = 6, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.667, Rules used = {298, 31, 648, 632, 210, 642} \[ \int \frac {x}{1+x^3} \, dx=-\frac {\arctan \left (\frac {1-2 x}{\sqrt {3}}\right )}{\sqrt {3}}+\frac {1}{6} \log \left (x^2-x+1\right )-\frac {1}{3} \log (x+1) \]

[In]

Int[x/(1 + x^3),x]

[Out]

-(ArcTan[(1 - 2*x)/Sqrt[3]]/Sqrt[3]) - Log[1 + x]/3 + Log[1 - x + x^2]/6

Rule 31

Int[((a_) + (b_.)*(x_))^(-1), x_Symbol] :> Simp[Log[RemoveContent[a + b*x, x]]/b, x] /; FreeQ[{a, b}, x]

Rule 210

Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> Simp[(-(Rt[-a, 2]*Rt[-b, 2])^(-1))*ArcTan[Rt[-b, 2]*(x/Rt[-a, 2])
], x] /; FreeQ[{a, b}, x] && PosQ[a/b] && (LtQ[a, 0] || LtQ[b, 0])

Rule 298

Int[(x_)/((a_) + (b_.)*(x_)^3), x_Symbol] :> Dist[-(3*Rt[a, 3]*Rt[b, 3])^(-1), Int[1/(Rt[a, 3] + Rt[b, 3]*x),
x], x] + Dist[1/(3*Rt[a, 3]*Rt[b, 3]), Int[(Rt[a, 3] + Rt[b, 3]*x)/(Rt[a, 3]^2 - Rt[a, 3]*Rt[b, 3]*x + Rt[b, 3
]^2*x^2), x], x] /; FreeQ[{a, b}, x]

Rule 632

Int[((a_.) + (b_.)*(x_) + (c_.)*(x_)^2)^(-1), x_Symbol] :> Dist[-2, Subst[Int[1/Simp[b^2 - 4*a*c - x^2, x], x]
, x, b + 2*c*x], x] /; FreeQ[{a, b, c}, x] && NeQ[b^2 - 4*a*c, 0]

Rule 642

Int[((d_) + (e_.)*(x_))/((a_.) + (b_.)*(x_) + (c_.)*(x_)^2), x_Symbol] :> Simp[d*(Log[RemoveContent[a + b*x +
c*x^2, x]]/b), x] /; FreeQ[{a, b, c, d, e}, x] && EqQ[2*c*d - b*e, 0]

Rule 648

Int[((d_.) + (e_.)*(x_))/((a_) + (b_.)*(x_) + (c_.)*(x_)^2), x_Symbol] :> Dist[(2*c*d - b*e)/(2*c), Int[1/(a +
 b*x + c*x^2), x], x] + Dist[e/(2*c), Int[(b + 2*c*x)/(a + b*x + c*x^2), x], x] /; FreeQ[{a, b, c, d, e}, x] &
& NeQ[2*c*d - b*e, 0] && NeQ[b^2 - 4*a*c, 0] &&  !NiceSqrtQ[b^2 - 4*a*c]

Rubi steps \begin{align*} \text {integral}& = -\left (\frac {1}{3} \int \frac {1}{1+x} \, dx\right )+\frac {1}{3} \int \frac {1+x}{1-x+x^2} \, dx \\ & = -\frac {1}{3} \log (1+x)+\frac {1}{6} \int \frac {-1+2 x}{1-x+x^2} \, dx+\frac {1}{2} \int \frac {1}{1-x+x^2} \, dx \\ & = -\frac {1}{3} \log (1+x)+\frac {1}{6} \log \left (1-x+x^2\right )-\text {Subst}\left (\int \frac {1}{-3-x^2} \, dx,x,-1+2 x\right ) \\ & = \frac {\arctan \left (\frac {-1+2 x}{\sqrt {3}}\right )}{\sqrt {3}}-\frac {1}{3} \log (1+x)+\frac {1}{6} \log \left (1-x+x^2\right ) \\ \end{align*}

Mathematica [A] (verified)

Time = 0.01 (sec) , antiderivative size = 40, normalized size of antiderivative = 0.98 \[ \int \frac {x}{1+x^3} \, dx=\frac {\arctan \left (\frac {-1+2 x}{\sqrt {3}}\right )}{\sqrt {3}}-\frac {1}{3} \log (1+x)+\frac {1}{6} \log \left (1-x+x^2\right ) \]

[In]

Integrate[x/(1 + x^3),x]

[Out]

ArcTan[(-1 + 2*x)/Sqrt[3]]/Sqrt[3] - Log[1 + x]/3 + Log[1 - x + x^2]/6

Maple [A] (verified)

Time = 0.07 (sec) , antiderivative size = 33, normalized size of antiderivative = 0.80

method result size
risch \(-\frac {\ln \left (1+x \right )}{3}+\frac {\ln \left (x^{2}-x +1\right )}{6}+\frac {\sqrt {3}\, \arctan \left (\frac {2 \left (x -\frac {1}{2}\right ) \sqrt {3}}{3}\right )}{3}\) \(33\)
default \(\frac {\ln \left (x^{2}-x +1\right )}{6}+\frac {\sqrt {3}\, \arctan \left (\frac {\left (2 x -1\right ) \sqrt {3}}{3}\right )}{3}-\frac {\ln \left (1+x \right )}{3}\) \(35\)
meijerg \(-\frac {x^{2} \ln \left (1+\left (x^{3}\right )^{\frac {1}{3}}\right )}{3 \left (x^{3}\right )^{\frac {2}{3}}}+\frac {x^{2} \ln \left (1-\left (x^{3}\right )^{\frac {1}{3}}+\left (x^{3}\right )^{\frac {2}{3}}\right )}{6 \left (x^{3}\right )^{\frac {2}{3}}}+\frac {x^{2} \sqrt {3}\, \arctan \left (\frac {\sqrt {3}\, \left (x^{3}\right )^{\frac {1}{3}}}{2-\left (x^{3}\right )^{\frac {1}{3}}}\right )}{3 \left (x^{3}\right )^{\frac {2}{3}}}\) \(80\)

[In]

int(x/(x^3+1),x,method=_RETURNVERBOSE)

[Out]

-1/3*ln(1+x)+1/6*ln(x^2-x+1)+1/3*3^(1/2)*arctan(2/3*(x-1/2)*3^(1/2))

Fricas [A] (verification not implemented)

none

Time = 0.27 (sec) , antiderivative size = 34, normalized size of antiderivative = 0.83 \[ \int \frac {x}{1+x^3} \, dx=\frac {1}{3} \, \sqrt {3} \arctan \left (\frac {1}{3} \, \sqrt {3} {\left (2 \, x - 1\right )}\right ) + \frac {1}{6} \, \log \left (x^{2} - x + 1\right ) - \frac {1}{3} \, \log \left (x + 1\right ) \]

[In]

integrate(x/(x^3+1),x, algorithm="fricas")

[Out]

1/3*sqrt(3)*arctan(1/3*sqrt(3)*(2*x - 1)) + 1/6*log(x^2 - x + 1) - 1/3*log(x + 1)

Sympy [A] (verification not implemented)

Time = 0.06 (sec) , antiderivative size = 41, normalized size of antiderivative = 1.00 \[ \int \frac {x}{1+x^3} \, dx=- \frac {\log {\left (x + 1 \right )}}{3} + \frac {\log {\left (x^{2} - x + 1 \right )}}{6} + \frac {\sqrt {3} \operatorname {atan}{\left (\frac {2 \sqrt {3} x}{3} - \frac {\sqrt {3}}{3} \right )}}{3} \]

[In]

integrate(x/(x**3+1),x)

[Out]

-log(x + 1)/3 + log(x**2 - x + 1)/6 + sqrt(3)*atan(2*sqrt(3)*x/3 - sqrt(3)/3)/3

Maxima [A] (verification not implemented)

none

Time = 0.27 (sec) , antiderivative size = 34, normalized size of antiderivative = 0.83 \[ \int \frac {x}{1+x^3} \, dx=\frac {1}{3} \, \sqrt {3} \arctan \left (\frac {1}{3} \, \sqrt {3} {\left (2 \, x - 1\right )}\right ) + \frac {1}{6} \, \log \left (x^{2} - x + 1\right ) - \frac {1}{3} \, \log \left (x + 1\right ) \]

[In]

integrate(x/(x^3+1),x, algorithm="maxima")

[Out]

1/3*sqrt(3)*arctan(1/3*sqrt(3)*(2*x - 1)) + 1/6*log(x^2 - x + 1) - 1/3*log(x + 1)

Giac [A] (verification not implemented)

none

Time = 0.28 (sec) , antiderivative size = 35, normalized size of antiderivative = 0.85 \[ \int \frac {x}{1+x^3} \, dx=\frac {1}{3} \, \sqrt {3} \arctan \left (\frac {1}{3} \, \sqrt {3} {\left (2 \, x - 1\right )}\right ) + \frac {1}{6} \, \log \left (x^{2} - x + 1\right ) - \frac {1}{3} \, \log \left ({\left | x + 1 \right |}\right ) \]

[In]

integrate(x/(x^3+1),x, algorithm="giac")

[Out]

1/3*sqrt(3)*arctan(1/3*sqrt(3)*(2*x - 1)) + 1/6*log(x^2 - x + 1) - 1/3*log(abs(x + 1))

Mupad [B] (verification not implemented)

Time = 0.20 (sec) , antiderivative size = 46, normalized size of antiderivative = 1.12 \[ \int \frac {x}{1+x^3} \, dx=-\frac {\ln \left (x+1\right )}{3}-\ln \left (x-\frac {1}{2}-\frac {\sqrt {3}\,1{}\mathrm {i}}{2}\right )\,\left (-\frac {1}{6}+\frac {\sqrt {3}\,1{}\mathrm {i}}{6}\right )+\ln \left (x-\frac {1}{2}+\frac {\sqrt {3}\,1{}\mathrm {i}}{2}\right )\,\left (\frac {1}{6}+\frac {\sqrt {3}\,1{}\mathrm {i}}{6}\right ) \]

[In]

int(x/(x^3 + 1),x)

[Out]

log(x + (3^(1/2)*1i)/2 - 1/2)*((3^(1/2)*1i)/6 + 1/6) - log(x - (3^(1/2)*1i)/2 - 1/2)*((3^(1/2)*1i)/6 - 1/6) -
log(x + 1)/3