\(\int \frac {1}{(a+b x)^5} \, dx\) [42]

   Optimal result
   Rubi [A] (verified)
   Mathematica [A] (verified)
   Maple [A] (verified)
   Fricas [B] (verification not implemented)
   Sympy [B] (verification not implemented)
   Maxima [A] (verification not implemented)
   Giac [A] (verification not implemented)
   Mupad [B] (verification not implemented)

Optimal result

Integrand size = 7, antiderivative size = 14 \[ \int \frac {1}{(a+b x)^5} \, dx=-\frac {1}{256 b^4 (a+b x)^4} \]

[Out]

-1/256/b^4/(b*x+a)^4

Rubi [A] (verified)

Time = 0.00 (sec) , antiderivative size = 14, normalized size of antiderivative = 1.00, number of steps used = 1, number of rules used = 1, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.143, Rules used = {32} \[ \int \frac {1}{(a+b x)^5} \, dx=-\frac {1}{4 b (a+b x)^4} \]

[In]

Int[(a + b*x)^(-5),x]

[Out]

-1/4*1/(b*(a + b*x)^4)

Rule 32

Int[((a_.) + (b_.)*(x_))^(m_), x_Symbol] :> Simp[(a + b*x)^(m + 1)/(b*(m + 1)), x] /; FreeQ[{a, b, m}, x] && N
eQ[m, -1]

Rubi steps \begin{align*} \text {integral}& = -\frac {1}{4 b (a+b x)^4} \\ \end{align*}

Mathematica [A] (verified)

Time = 0.00 (sec) , antiderivative size = 14, normalized size of antiderivative = 1.00 \[ \int \frac {1}{(a+b x)^5} \, dx=-\frac {1}{4 b (a+b x)^4} \]

[In]

Integrate[(a + b*x)^(-5),x]

[Out]

-1/4*1/(b*(a + b*x)^4)

Maple [A] (verified)

Time = 0.08 (sec) , antiderivative size = 13, normalized size of antiderivative = 0.93

method result size
gosper \(-\frac {1}{4 \left (b x +a \right )^{4} b}\) \(13\)
default \(-\frac {1}{4 \left (b x +a \right )^{4} b}\) \(13\)
norman \(-\frac {1}{4 \left (b x +a \right )^{4} b}\) \(13\)
risch \(-\frac {1}{4 \left (b x +a \right )^{4} b}\) \(13\)
parallelrisch \(-\frac {1}{4 \left (b x +a \right )^{4} b}\) \(13\)

[In]

int(1/(b*x+a)^5,x,method=_RETURNVERBOSE)

[Out]

-1/4/(b*x+a)^4/b

Fricas [B] (verification not implemented)

Leaf count of result is larger than twice the leaf count of optimal. 46 vs. \(2 (12) = 24\).

Time = 0.23 (sec) , antiderivative size = 46, normalized size of antiderivative = 3.29 \[ \int \frac {1}{(a+b x)^5} \, dx=-\frac {1}{4 \, {\left (b^{5} x^{4} + 4 \, a b^{4} x^{3} + 6 \, a^{2} b^{3} x^{2} + 4 \, a^{3} b^{2} x + a^{4} b\right )}} \]

[In]

integrate(1/(b*x+a)^5,x, algorithm="fricas")

[Out]

-1/4/(b^5*x^4 + 4*a*b^4*x^3 + 6*a^2*b^3*x^2 + 4*a^3*b^2*x + a^4*b)

Sympy [B] (verification not implemented)

Leaf count of result is larger than twice the leaf count of optimal. 49 vs. \(2 (14) = 28\).

Time = 0.13 (sec) , antiderivative size = 49, normalized size of antiderivative = 3.50 \[ \int \frac {1}{(a+b x)^5} \, dx=- \frac {1}{4 a^{4} b + 16 a^{3} b^{2} x + 24 a^{2} b^{3} x^{2} + 16 a b^{4} x^{3} + 4 b^{5} x^{4}} \]

[In]

integrate(1/(b*x+a)**5,x)

[Out]

-1/(4*a**4*b + 16*a**3*b**2*x + 24*a**2*b**3*x**2 + 16*a*b**4*x**3 + 4*b**5*x**4)

Maxima [A] (verification not implemented)

none

Time = 0.19 (sec) , antiderivative size = 12, normalized size of antiderivative = 0.86 \[ \int \frac {1}{(a+b x)^5} \, dx=-\frac {1}{4 \, {\left (b x + a\right )}^{4} b} \]

[In]

integrate(1/(b*x+a)^5,x, algorithm="maxima")

[Out]

-1/4/((b*x + a)^4*b)

Giac [A] (verification not implemented)

none

Time = 0.26 (sec) , antiderivative size = 12, normalized size of antiderivative = 0.86 \[ \int \frac {1}{(a+b x)^5} \, dx=-\frac {1}{4 \, {\left (b x + a\right )}^{4} b} \]

[In]

integrate(1/(b*x+a)^5,x, algorithm="giac")

[Out]

-1/4/((b*x + a)^4*b)

Mupad [B] (verification not implemented)

Time = 16.81 (sec) , antiderivative size = 48, normalized size of antiderivative = 3.43 \[ \int \frac {1}{(a+b x)^5} \, dx=-\frac {1}{4\,a^4\,b+16\,a^3\,b^2\,x+24\,a^2\,b^3\,x^2+16\,a\,b^4\,x^3+4\,b^5\,x^4} \]

[In]

int(1/(a + b*x)^5,x)

[Out]

-1/(4*a^4*b + 4*b^5*x^4 + 16*a^3*b^2*x + 16*a*b^4*x^3 + 24*a^2*b^3*x^2)