\(\int \frac {x^2}{a+b x^4} \, dx\) [79]

   Optimal result
   Rubi [B] (verified)
   Mathematica [B] (verified)
   Maple [C] (verified)
   Fricas [C] (verification not implemented)
   Sympy [A] (verification not implemented)
   Maxima [B] (verification not implemented)
   Giac [B] (verification not implemented)
   Mupad [B] (verification not implemented)

Optimal result

Integrand size = 13, antiderivative size = 63 \[ \int \frac {x^2}{a+b x^4} \, dx=-\frac {-2 \arctan \left (\frac {x}{\sqrt [4]{-\frac {a}{b}}}\right )+\log \left (\frac {\sqrt [4]{-\frac {a}{b}}+x}{-\sqrt [4]{-\frac {a}{b}}+x}\right )}{4 \sqrt [4]{-\frac {a}{b}} b} \]

[Out]

-1/4/b/(-a/b)^(1/4)*(ln((x+(-a/b)^(1/4))/(x-(-a/b)^(1/4)))-2*arctan(x/(-a/b)^(1/4)))

Rubi [B] (verified)

Leaf count is larger than twice the leaf count of optimal. \(185\) vs. \(2(63)=126\).

Time = 0.12 (sec) , antiderivative size = 185, normalized size of antiderivative = 2.94, number of steps used = 9, number of rules used = 6, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.462, Rules used = {303, 1176, 631, 210, 1179, 642} \[ \int \frac {x^2}{a+b x^4} \, dx=-\frac {\arctan \left (1-\frac {\sqrt {2} \sqrt [4]{b} x}{\sqrt [4]{a}}\right )}{2 \sqrt {2} \sqrt [4]{a} b^{3/4}}+\frac {\arctan \left (\frac {\sqrt {2} \sqrt [4]{b} x}{\sqrt [4]{a}}+1\right )}{2 \sqrt {2} \sqrt [4]{a} b^{3/4}}+\frac {\log \left (-\sqrt {2} \sqrt [4]{a} \sqrt [4]{b} x+\sqrt {a}+\sqrt {b} x^2\right )}{4 \sqrt {2} \sqrt [4]{a} b^{3/4}}-\frac {\log \left (\sqrt {2} \sqrt [4]{a} \sqrt [4]{b} x+\sqrt {a}+\sqrt {b} x^2\right )}{4 \sqrt {2} \sqrt [4]{a} b^{3/4}} \]

[In]

Int[x^2/(a + b*x^4),x]

[Out]

-1/2*ArcTan[1 - (Sqrt[2]*b^(1/4)*x)/a^(1/4)]/(Sqrt[2]*a^(1/4)*b^(3/4)) + ArcTan[1 + (Sqrt[2]*b^(1/4)*x)/a^(1/4
)]/(2*Sqrt[2]*a^(1/4)*b^(3/4)) + Log[Sqrt[a] - Sqrt[2]*a^(1/4)*b^(1/4)*x + Sqrt[b]*x^2]/(4*Sqrt[2]*a^(1/4)*b^(
3/4)) - Log[Sqrt[a] + Sqrt[2]*a^(1/4)*b^(1/4)*x + Sqrt[b]*x^2]/(4*Sqrt[2]*a^(1/4)*b^(3/4))

Rule 210

Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> Simp[(-(Rt[-a, 2]*Rt[-b, 2])^(-1))*ArcTan[Rt[-b, 2]*(x/Rt[-a, 2])
], x] /; FreeQ[{a, b}, x] && PosQ[a/b] && (LtQ[a, 0] || LtQ[b, 0])

Rule 303

Int[(x_)^2/((a_) + (b_.)*(x_)^4), x_Symbol] :> With[{r = Numerator[Rt[a/b, 2]], s = Denominator[Rt[a/b, 2]]},
Dist[1/(2*s), Int[(r + s*x^2)/(a + b*x^4), x], x] - Dist[1/(2*s), Int[(r - s*x^2)/(a + b*x^4), x], x]] /; Free
Q[{a, b}, x] && (GtQ[a/b, 0] || (PosQ[a/b] && AtomQ[SplitProduct[SumBaseQ, a]] && AtomQ[SplitProduct[SumBaseQ,
 b]]))

Rule 631

Int[((a_) + (b_.)*(x_) + (c_.)*(x_)^2)^(-1), x_Symbol] :> With[{q = 1 - 4*Simplify[a*(c/b^2)]}, Dist[-2/b, Sub
st[Int[1/(q - x^2), x], x, 1 + 2*c*(x/b)], x] /; RationalQ[q] && (EqQ[q^2, 1] ||  !RationalQ[b^2 - 4*a*c])] /;
 FreeQ[{a, b, c}, x] && NeQ[b^2 - 4*a*c, 0]

Rule 642

Int[((d_) + (e_.)*(x_))/((a_.) + (b_.)*(x_) + (c_.)*(x_)^2), x_Symbol] :> Simp[d*(Log[RemoveContent[a + b*x +
c*x^2, x]]/b), x] /; FreeQ[{a, b, c, d, e}, x] && EqQ[2*c*d - b*e, 0]

Rule 1176

Int[((d_) + (e_.)*(x_)^2)/((a_) + (c_.)*(x_)^4), x_Symbol] :> With[{q = Rt[2*(d/e), 2]}, Dist[e/(2*c), Int[1/S
imp[d/e + q*x + x^2, x], x], x] + Dist[e/(2*c), Int[1/Simp[d/e - q*x + x^2, x], x], x]] /; FreeQ[{a, c, d, e},
 x] && EqQ[c*d^2 - a*e^2, 0] && PosQ[d*e]

Rule 1179

Int[((d_) + (e_.)*(x_)^2)/((a_) + (c_.)*(x_)^4), x_Symbol] :> With[{q = Rt[-2*(d/e), 2]}, Dist[e/(2*c*q), Int[
(q - 2*x)/Simp[d/e + q*x - x^2, x], x], x] + Dist[e/(2*c*q), Int[(q + 2*x)/Simp[d/e - q*x - x^2, x], x], x]] /
; FreeQ[{a, c, d, e}, x] && EqQ[c*d^2 - a*e^2, 0] && NegQ[d*e]

Rubi steps \begin{align*} \text {integral}& = -\frac {\int \frac {\sqrt {a}-\sqrt {b} x^2}{a+b x^4} \, dx}{2 \sqrt {b}}+\frac {\int \frac {\sqrt {a}+\sqrt {b} x^2}{a+b x^4} \, dx}{2 \sqrt {b}} \\ & = \frac {\int \frac {1}{\frac {\sqrt {a}}{\sqrt {b}}-\frac {\sqrt {2} \sqrt [4]{a} x}{\sqrt [4]{b}}+x^2} \, dx}{4 b}+\frac {\int \frac {1}{\frac {\sqrt {a}}{\sqrt {b}}+\frac {\sqrt {2} \sqrt [4]{a} x}{\sqrt [4]{b}}+x^2} \, dx}{4 b}+\frac {\int \frac {\frac {\sqrt {2} \sqrt [4]{a}}{\sqrt [4]{b}}+2 x}{-\frac {\sqrt {a}}{\sqrt {b}}-\frac {\sqrt {2} \sqrt [4]{a} x}{\sqrt [4]{b}}-x^2} \, dx}{4 \sqrt {2} \sqrt [4]{a} b^{3/4}}+\frac {\int \frac {\frac {\sqrt {2} \sqrt [4]{a}}{\sqrt [4]{b}}-2 x}{-\frac {\sqrt {a}}{\sqrt {b}}+\frac {\sqrt {2} \sqrt [4]{a} x}{\sqrt [4]{b}}-x^2} \, dx}{4 \sqrt {2} \sqrt [4]{a} b^{3/4}} \\ & = \frac {\log \left (\sqrt {a}-\sqrt {2} \sqrt [4]{a} \sqrt [4]{b} x+\sqrt {b} x^2\right )}{4 \sqrt {2} \sqrt [4]{a} b^{3/4}}-\frac {\log \left (\sqrt {a}+\sqrt {2} \sqrt [4]{a} \sqrt [4]{b} x+\sqrt {b} x^2\right )}{4 \sqrt {2} \sqrt [4]{a} b^{3/4}}+\frac {\text {Subst}\left (\int \frac {1}{-1-x^2} \, dx,x,1-\frac {\sqrt {2} \sqrt [4]{b} x}{\sqrt [4]{a}}\right )}{2 \sqrt {2} \sqrt [4]{a} b^{3/4}}-\frac {\text {Subst}\left (\int \frac {1}{-1-x^2} \, dx,x,1+\frac {\sqrt {2} \sqrt [4]{b} x}{\sqrt [4]{a}}\right )}{2 \sqrt {2} \sqrt [4]{a} b^{3/4}} \\ & = -\frac {\arctan \left (1-\frac {\sqrt {2} \sqrt [4]{b} x}{\sqrt [4]{a}}\right )}{2 \sqrt {2} \sqrt [4]{a} b^{3/4}}+\frac {\arctan \left (1+\frac {\sqrt {2} \sqrt [4]{b} x}{\sqrt [4]{a}}\right )}{2 \sqrt {2} \sqrt [4]{a} b^{3/4}}+\frac {\log \left (\sqrt {a}-\sqrt {2} \sqrt [4]{a} \sqrt [4]{b} x+\sqrt {b} x^2\right )}{4 \sqrt {2} \sqrt [4]{a} b^{3/4}}-\frac {\log \left (\sqrt {a}+\sqrt {2} \sqrt [4]{a} \sqrt [4]{b} x+\sqrt {b} x^2\right )}{4 \sqrt {2} \sqrt [4]{a} b^{3/4}} \\ \end{align*}

Mathematica [B] (verified)

Leaf count is larger than twice the leaf count of optimal. \(134\) vs. \(2(63)=126\).

Time = 0.02 (sec) , antiderivative size = 134, normalized size of antiderivative = 2.13 \[ \int \frac {x^2}{a+b x^4} \, dx=\frac {-2 \arctan \left (1-\frac {\sqrt {2} \sqrt [4]{b} x}{\sqrt [4]{a}}\right )+2 \arctan \left (1+\frac {\sqrt {2} \sqrt [4]{b} x}{\sqrt [4]{a}}\right )+\log \left (\sqrt {a}-\sqrt {2} \sqrt [4]{a} \sqrt [4]{b} x+\sqrt {b} x^2\right )-\log \left (\sqrt {a}+\sqrt {2} \sqrt [4]{a} \sqrt [4]{b} x+\sqrt {b} x^2\right )}{4 \sqrt {2} \sqrt [4]{a} b^{3/4}} \]

[In]

Integrate[x^2/(a + b*x^4),x]

[Out]

(-2*ArcTan[1 - (Sqrt[2]*b^(1/4)*x)/a^(1/4)] + 2*ArcTan[1 + (Sqrt[2]*b^(1/4)*x)/a^(1/4)] + Log[Sqrt[a] - Sqrt[2
]*a^(1/4)*b^(1/4)*x + Sqrt[b]*x^2] - Log[Sqrt[a] + Sqrt[2]*a^(1/4)*b^(1/4)*x + Sqrt[b]*x^2])/(4*Sqrt[2]*a^(1/4
)*b^(3/4))

Maple [C] (verified)

Result contains higher order function than in optimal. Order 9 vs. order 3.

Time = 0.08 (sec) , antiderivative size = 27, normalized size of antiderivative = 0.43

method result size
risch \(\frac {\munderset {\textit {\_R} =\operatorname {RootOf}\left (b \,\textit {\_Z}^{4}+a \right )}{\sum }\frac {\ln \left (x -\textit {\_R} \right )}{\textit {\_R}}}{4 b}\) \(27\)
default \(\frac {\sqrt {2}\, \left (\ln \left (\frac {x^{2}-\left (\frac {a}{b}\right )^{\frac {1}{4}} x \sqrt {2}+\sqrt {\frac {a}{b}}}{x^{2}+\left (\frac {a}{b}\right )^{\frac {1}{4}} x \sqrt {2}+\sqrt {\frac {a}{b}}}\right )+2 \arctan \left (\frac {\sqrt {2}\, x}{\left (\frac {a}{b}\right )^{\frac {1}{4}}}+1\right )+2 \arctan \left (\frac {\sqrt {2}\, x}{\left (\frac {a}{b}\right )^{\frac {1}{4}}}-1\right )\right )}{8 b \left (\frac {a}{b}\right )^{\frac {1}{4}}}\) \(102\)

[In]

int(x^2/(b*x^4+a),x,method=_RETURNVERBOSE)

[Out]

1/4/b*sum(1/_R*ln(x-_R),_R=RootOf(_Z^4*b+a))

Fricas [C] (verification not implemented)

Result contains complex when optimal does not.

Time = 0.26 (sec) , antiderivative size = 124, normalized size of antiderivative = 1.97 \[ \int \frac {x^2}{a+b x^4} \, dx=\frac {1}{4} \, \left (-\frac {1}{a b^{3}}\right )^{\frac {1}{4}} \log \left (a b^{2} \left (-\frac {1}{a b^{3}}\right )^{\frac {3}{4}} + x\right ) - \frac {1}{4} i \, \left (-\frac {1}{a b^{3}}\right )^{\frac {1}{4}} \log \left (i \, a b^{2} \left (-\frac {1}{a b^{3}}\right )^{\frac {3}{4}} + x\right ) + \frac {1}{4} i \, \left (-\frac {1}{a b^{3}}\right )^{\frac {1}{4}} \log \left (-i \, a b^{2} \left (-\frac {1}{a b^{3}}\right )^{\frac {3}{4}} + x\right ) - \frac {1}{4} \, \left (-\frac {1}{a b^{3}}\right )^{\frac {1}{4}} \log \left (-a b^{2} \left (-\frac {1}{a b^{3}}\right )^{\frac {3}{4}} + x\right ) \]

[In]

integrate(x^2/(b*x^4+a),x, algorithm="fricas")

[Out]

1/4*(-1/(a*b^3))^(1/4)*log(a*b^2*(-1/(a*b^3))^(3/4) + x) - 1/4*I*(-1/(a*b^3))^(1/4)*log(I*a*b^2*(-1/(a*b^3))^(
3/4) + x) + 1/4*I*(-1/(a*b^3))^(1/4)*log(-I*a*b^2*(-1/(a*b^3))^(3/4) + x) - 1/4*(-1/(a*b^3))^(1/4)*log(-a*b^2*
(-1/(a*b^3))^(3/4) + x)

Sympy [A] (verification not implemented)

Time = 0.08 (sec) , antiderivative size = 26, normalized size of antiderivative = 0.41 \[ \int \frac {x^2}{a+b x^4} \, dx=\operatorname {RootSum} {\left (256 t^{4} a b^{3} + 1, \left ( t \mapsto t \log {\left (64 t^{3} a b^{2} + x \right )} \right )\right )} \]

[In]

integrate(x**2/(b*x**4+a),x)

[Out]

RootSum(256*_t**4*a*b**3 + 1, Lambda(_t, _t*log(64*_t**3*a*b**2 + x)))

Maxima [B] (verification not implemented)

Leaf count of result is larger than twice the leaf count of optimal. 169 vs. \(2 (55) = 110\).

Time = 0.30 (sec) , antiderivative size = 169, normalized size of antiderivative = 2.68 \[ \int \frac {x^2}{a+b x^4} \, dx=\frac {\sqrt {2} \arctan \left (\frac {\sqrt {2} {\left (2 \, \sqrt {b} x + \sqrt {2} a^{\frac {1}{4}} b^{\frac {1}{4}}\right )}}{2 \, \sqrt {\sqrt {a} \sqrt {b}}}\right )}{4 \, \sqrt {\sqrt {a} \sqrt {b}} \sqrt {b}} + \frac {\sqrt {2} \arctan \left (\frac {\sqrt {2} {\left (2 \, \sqrt {b} x - \sqrt {2} a^{\frac {1}{4}} b^{\frac {1}{4}}\right )}}{2 \, \sqrt {\sqrt {a} \sqrt {b}}}\right )}{4 \, \sqrt {\sqrt {a} \sqrt {b}} \sqrt {b}} - \frac {\sqrt {2} \log \left (\sqrt {b} x^{2} + \sqrt {2} a^{\frac {1}{4}} b^{\frac {1}{4}} x + \sqrt {a}\right )}{8 \, a^{\frac {1}{4}} b^{\frac {3}{4}}} + \frac {\sqrt {2} \log \left (\sqrt {b} x^{2} - \sqrt {2} a^{\frac {1}{4}} b^{\frac {1}{4}} x + \sqrt {a}\right )}{8 \, a^{\frac {1}{4}} b^{\frac {3}{4}}} \]

[In]

integrate(x^2/(b*x^4+a),x, algorithm="maxima")

[Out]

1/4*sqrt(2)*arctan(1/2*sqrt(2)*(2*sqrt(b)*x + sqrt(2)*a^(1/4)*b^(1/4))/sqrt(sqrt(a)*sqrt(b)))/(sqrt(sqrt(a)*sq
rt(b))*sqrt(b)) + 1/4*sqrt(2)*arctan(1/2*sqrt(2)*(2*sqrt(b)*x - sqrt(2)*a^(1/4)*b^(1/4))/sqrt(sqrt(a)*sqrt(b))
)/(sqrt(sqrt(a)*sqrt(b))*sqrt(b)) - 1/8*sqrt(2)*log(sqrt(b)*x^2 + sqrt(2)*a^(1/4)*b^(1/4)*x + sqrt(a))/(a^(1/4
)*b^(3/4)) + 1/8*sqrt(2)*log(sqrt(b)*x^2 - sqrt(2)*a^(1/4)*b^(1/4)*x + sqrt(a))/(a^(1/4)*b^(3/4))

Giac [B] (verification not implemented)

Leaf count of result is larger than twice the leaf count of optimal. 179 vs. \(2 (55) = 110\).

Time = 0.26 (sec) , antiderivative size = 179, normalized size of antiderivative = 2.84 \[ \int \frac {x^2}{a+b x^4} \, dx=\frac {\sqrt {2} \left (a b^{3}\right )^{\frac {3}{4}} \arctan \left (\frac {\sqrt {2} {\left (2 \, x + \sqrt {2} \left (\frac {a}{b}\right )^{\frac {1}{4}}\right )}}{2 \, \left (\frac {a}{b}\right )^{\frac {1}{4}}}\right )}{4 \, a b^{3}} + \frac {\sqrt {2} \left (a b^{3}\right )^{\frac {3}{4}} \arctan \left (\frac {\sqrt {2} {\left (2 \, x - \sqrt {2} \left (\frac {a}{b}\right )^{\frac {1}{4}}\right )}}{2 \, \left (\frac {a}{b}\right )^{\frac {1}{4}}}\right )}{4 \, a b^{3}} - \frac {\sqrt {2} \left (a b^{3}\right )^{\frac {3}{4}} \log \left (x^{2} + \sqrt {2} x \left (\frac {a}{b}\right )^{\frac {1}{4}} + \sqrt {\frac {a}{b}}\right )}{8 \, a b^{3}} + \frac {\sqrt {2} \left (a b^{3}\right )^{\frac {3}{4}} \log \left (x^{2} - \sqrt {2} x \left (\frac {a}{b}\right )^{\frac {1}{4}} + \sqrt {\frac {a}{b}}\right )}{8 \, a b^{3}} \]

[In]

integrate(x^2/(b*x^4+a),x, algorithm="giac")

[Out]

1/4*sqrt(2)*(a*b^3)^(3/4)*arctan(1/2*sqrt(2)*(2*x + sqrt(2)*(a/b)^(1/4))/(a/b)^(1/4))/(a*b^3) + 1/4*sqrt(2)*(a
*b^3)^(3/4)*arctan(1/2*sqrt(2)*(2*x - sqrt(2)*(a/b)^(1/4))/(a/b)^(1/4))/(a*b^3) - 1/8*sqrt(2)*(a*b^3)^(3/4)*lo
g(x^2 + sqrt(2)*x*(a/b)^(1/4) + sqrt(a/b))/(a*b^3) + 1/8*sqrt(2)*(a*b^3)^(3/4)*log(x^2 - sqrt(2)*x*(a/b)^(1/4)
 + sqrt(a/b))/(a*b^3)

Mupad [B] (verification not implemented)

Time = 0.10 (sec) , antiderivative size = 35, normalized size of antiderivative = 0.56 \[ \int \frac {x^2}{a+b x^4} \, dx=\frac {\mathrm {atan}\left (\frac {b^{1/4}\,x}{{\left (-a\right )}^{1/4}}\right )-\mathrm {atanh}\left (\frac {b^{1/4}\,x}{{\left (-a\right )}^{1/4}}\right )}{2\,{\left (-a\right )}^{1/4}\,b^{3/4}} \]

[In]

int(x^2/(a + b*x^4),x)

[Out]

(atan((b^(1/4)*x)/(-a)^(1/4)) - atanh((b^(1/4)*x)/(-a)^(1/4)))/(2*(-a)^(1/4)*b^(3/4))