Integrand size = 13, antiderivative size = 48 \[ \int x^3 \left (a+b x^2\right )^p \, dx=-\frac {a \left (a+b x^2\right )^{1+p}}{2 b^2 (1+p)}+\frac {\left (a+b x^2\right )^{2+p}}{2 b^2 (2+p)} \]
[Out]
Time = 0.02 (sec) , antiderivative size = 48, normalized size of antiderivative = 1.00, number of steps used = 3, number of rules used = 2, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.154, Rules used = {272, 45} \[ \int x^3 \left (a+b x^2\right )^p \, dx=\frac {\left (a+b x^2\right )^{p+2}}{2 b^2 (p+2)}-\frac {a \left (a+b x^2\right )^{p+1}}{2 b^2 (p+1)} \]
[In]
[Out]
Rule 45
Rule 272
Rubi steps \begin{align*} \text {integral}& = \frac {1}{2} \text {Subst}\left (\int x (a+b x)^p \, dx,x,x^2\right ) \\ & = \frac {1}{2} \text {Subst}\left (\int \left (-\frac {a (a+b x)^p}{b}+\frac {(a+b x)^{1+p}}{b}\right ) \, dx,x,x^2\right ) \\ & = -\frac {a \left (a+b x^2\right )^{1+p}}{2 b^2 (1+p)}+\frac {\left (a+b x^2\right )^{2+p}}{2 b^2 (2+p)} \\ \end{align*}
Time = 0.05 (sec) , antiderivative size = 40, normalized size of antiderivative = 0.83 \[ \int x^3 \left (a+b x^2\right )^p \, dx=\frac {\left (a+b x^2\right )^{1+p} \left (-a+b (1+p) x^2\right )}{2 b^2 (1+p) (2+p)} \]
[In]
[Out]
Time = 2.24 (sec) , antiderivative size = 42, normalized size of antiderivative = 0.88
| method | result | size |
| gosper | \(-\frac {\left (b \,x^{2}+a \right )^{1+p} \left (-x^{2} p b -b \,x^{2}+a \right )}{2 b^{2} \left (p^{2}+3 p +2\right )}\) | \(42\) |
| risch | \(-\frac {\left (-b^{2} p \,x^{4}-b^{2} x^{4}-a b p \,x^{2}+a^{2}\right ) \left (b \,x^{2}+a \right )^{p}}{2 b^{2} \left (2+p \right ) \left (1+p \right )}\) | \(54\) |
| norman | \(\frac {x^{4} {\mathrm e}^{p \ln \left (b \,x^{2}+a \right )}}{4+2 p}-\frac {a^{2} {\mathrm e}^{p \ln \left (b \,x^{2}+a \right )}}{2 b^{2} \left (p^{2}+3 p +2\right )}+\frac {p a \,x^{2} {\mathrm e}^{p \ln \left (b \,x^{2}+a \right )}}{2 b \left (p^{2}+3 p +2\right )}\) | \(83\) |
| parallelrisch | \(\frac {x^{4} \left (b \,x^{2}+a \right )^{p} a \,b^{2} p +x^{4} \left (b \,x^{2}+a \right )^{p} a \,b^{2}+x^{2} \left (b \,x^{2}+a \right )^{p} a^{2} b p -\left (b \,x^{2}+a \right )^{p} a^{3}}{2 \left (p^{2}+3 p +2\right ) a \,b^{2}}\) | \(87\) |
[In]
[Out]
none
Time = 0.26 (sec) , antiderivative size = 58, normalized size of antiderivative = 1.21 \[ \int x^3 \left (a+b x^2\right )^p \, dx=\frac {{\left (a b p x^{2} + {\left (b^{2} p + b^{2}\right )} x^{4} - a^{2}\right )} {\left (b x^{2} + a\right )}^{p}}{2 \, {\left (b^{2} p^{2} + 3 \, b^{2} p + 2 \, b^{2}\right )}} \]
[In]
[Out]
Leaf count of result is larger than twice the leaf count of optimal. 333 vs. \(2 (37) = 74\).
Time = 0.56 (sec) , antiderivative size = 333, normalized size of antiderivative = 6.94 \[ \int x^3 \left (a+b x^2\right )^p \, dx=\begin {cases} \frac {a^{p} x^{4}}{4} & \text {for}\: b = 0 \\\frac {a \log {\left (x - \sqrt {- \frac {a}{b}} \right )}}{2 a b^{2} + 2 b^{3} x^{2}} + \frac {a \log {\left (x + \sqrt {- \frac {a}{b}} \right )}}{2 a b^{2} + 2 b^{3} x^{2}} + \frac {a}{2 a b^{2} + 2 b^{3} x^{2}} + \frac {b x^{2} \log {\left (x - \sqrt {- \frac {a}{b}} \right )}}{2 a b^{2} + 2 b^{3} x^{2}} + \frac {b x^{2} \log {\left (x + \sqrt {- \frac {a}{b}} \right )}}{2 a b^{2} + 2 b^{3} x^{2}} & \text {for}\: p = -2 \\- \frac {a \log {\left (x - \sqrt {- \frac {a}{b}} \right )}}{2 b^{2}} - \frac {a \log {\left (x + \sqrt {- \frac {a}{b}} \right )}}{2 b^{2}} + \frac {x^{2}}{2 b} & \text {for}\: p = -1 \\- \frac {a^{2} \left (a + b x^{2}\right )^{p}}{2 b^{2} p^{2} + 6 b^{2} p + 4 b^{2}} + \frac {a b p x^{2} \left (a + b x^{2}\right )^{p}}{2 b^{2} p^{2} + 6 b^{2} p + 4 b^{2}} + \frac {b^{2} p x^{4} \left (a + b x^{2}\right )^{p}}{2 b^{2} p^{2} + 6 b^{2} p + 4 b^{2}} + \frac {b^{2} x^{4} \left (a + b x^{2}\right )^{p}}{2 b^{2} p^{2} + 6 b^{2} p + 4 b^{2}} & \text {otherwise} \end {cases} \]
[In]
[Out]
none
Time = 0.22 (sec) , antiderivative size = 47, normalized size of antiderivative = 0.98 \[ \int x^3 \left (a+b x^2\right )^p \, dx=\frac {{\left (b^{2} {\left (p + 1\right )} x^{4} + a b p x^{2} - a^{2}\right )} {\left (b x^{2} + a\right )}^{p}}{2 \, {\left (p^{2} + 3 \, p + 2\right )} b^{2}} \]
[In]
[Out]
none
Time = 0.28 (sec) , antiderivative size = 51, normalized size of antiderivative = 1.06 \[ \int x^3 \left (a+b x^2\right )^p \, dx=\frac {{\left (b x^{2} + a\right )}^{2} {\left (b x^{2} + a\right )}^{p}}{2 \, b^{2} {\left (p + 2\right )}} - \frac {{\left (b x^{2} + a\right )}^{p + 1} a}{2 \, b^{2} {\left (p + 1\right )}} \]
[In]
[Out]
Time = 4.58 (sec) , antiderivative size = 68, normalized size of antiderivative = 1.42 \[ \int x^3 \left (a+b x^2\right )^p \, dx={\left (b\,x^2+a\right )}^p\,\left (\frac {x^4\,\left (p+1\right )}{2\,\left (p^2+3\,p+2\right )}-\frac {a^2}{2\,b^2\,\left (p^2+3\,p+2\right )}+\frac {a\,p\,x^2}{2\,b\,\left (p^2+3\,p+2\right )}\right ) \]
[In]
[Out]