Integrand size = 24, antiderivative size = 57 \[ \int \frac {1}{(2+e x)^{3/2} \sqrt {12-3 e^2 x^2}} \, dx=-\frac {\sqrt {2-e x}}{4 \sqrt {3} e (2+e x)}-\frac {\text {arctanh}\left (\frac {1}{2} \sqrt {2-e x}\right )}{8 \sqrt {3} e} \]
[Out]
Time = 0.01 (sec) , antiderivative size = 57, normalized size of antiderivative = 1.00, number of steps used = 4, number of rules used = 4, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.167, Rules used = {641, 44, 65, 212} \[ \int \frac {1}{(2+e x)^{3/2} \sqrt {12-3 e^2 x^2}} \, dx=-\frac {\text {arctanh}\left (\frac {1}{2} \sqrt {2-e x}\right )}{8 \sqrt {3} e}-\frac {\sqrt {2-e x}}{4 \sqrt {3} e (e x+2)} \]
[In]
[Out]
Rule 44
Rule 65
Rule 212
Rule 641
Rubi steps \begin{align*} \text {integral}& = \int \frac {1}{\sqrt {6-3 e x} (2+e x)^2} \, dx \\ & = -\frac {\sqrt {2-e x}}{4 \sqrt {3} e (2+e x)}+\frac {1}{8} \int \frac {1}{\sqrt {6-3 e x} (2+e x)} \, dx \\ & = -\frac {\sqrt {2-e x}}{4 \sqrt {3} e (2+e x)}-\frac {\text {Subst}\left (\int \frac {1}{4-\frac {x^2}{3}} \, dx,x,\sqrt {6-3 e x}\right )}{12 e} \\ & = -\frac {\sqrt {2-e x}}{4 \sqrt {3} e (2+e x)}-\frac {\tanh ^{-1}\left (\frac {1}{2} \sqrt {2-e x}\right )}{8 \sqrt {3} e} \\ \end{align*}
Time = 0.44 (sec) , antiderivative size = 74, normalized size of antiderivative = 1.30 \[ \int \frac {1}{(2+e x)^{3/2} \sqrt {12-3 e^2 x^2}} \, dx=-\frac {2 \sqrt {4-e^2 x^2}+(2+e x)^{3/2} \text {arctanh}\left (\frac {2 \sqrt {2+e x}}{\sqrt {4-e^2 x^2}}\right )}{8 \sqrt {3} e (2+e x)^{3/2}} \]
[In]
[Out]
Time = 2.23 (sec) , antiderivative size = 86, normalized size of antiderivative = 1.51
| method | result | size |
| default | \(-\frac {\sqrt {-x^{2} e^{2}+4}\, \left (\sqrt {3}\, \operatorname {arctanh}\left (\frac {\sqrt {-3 e x +6}\, \sqrt {3}}{6}\right ) e x +2 \sqrt {3}\, \operatorname {arctanh}\left (\frac {\sqrt {-3 e x +6}\, \sqrt {3}}{6}\right )+2 \sqrt {-3 e x +6}\right ) \sqrt {3}}{24 \left (e x +2\right )^{\frac {3}{2}} \sqrt {-3 e x +6}\, e}\) | \(86\) |
[In]
[Out]
Leaf count of result is larger than twice the leaf count of optimal. 116 vs. \(2 (43) = 86\).
Time = 0.28 (sec) , antiderivative size = 116, normalized size of antiderivative = 2.04 \[ \int \frac {1}{(2+e x)^{3/2} \sqrt {12-3 e^2 x^2}} \, dx=\frac {\sqrt {3} {\left (e^{2} x^{2} + 4 \, e x + 4\right )} \log \left (-\frac {3 \, e^{2} x^{2} - 12 \, e x + 4 \, \sqrt {3} \sqrt {-3 \, e^{2} x^{2} + 12} \sqrt {e x + 2} - 36}{e^{2} x^{2} + 4 \, e x + 4}\right ) - 4 \, \sqrt {-3 \, e^{2} x^{2} + 12} \sqrt {e x + 2}}{48 \, {\left (e^{3} x^{2} + 4 \, e^{2} x + 4 \, e\right )}} \]
[In]
[Out]
\[ \int \frac {1}{(2+e x)^{3/2} \sqrt {12-3 e^2 x^2}} \, dx=\frac {\sqrt {3} \int \frac {1}{e x \sqrt {e x + 2} \sqrt {- e^{2} x^{2} + 4} + 2 \sqrt {e x + 2} \sqrt {- e^{2} x^{2} + 4}}\, dx}{3} \]
[In]
[Out]
\[ \int \frac {1}{(2+e x)^{3/2} \sqrt {12-3 e^2 x^2}} \, dx=\int { \frac {1}{\sqrt {-3 \, e^{2} x^{2} + 12} {\left (e x + 2\right )}^{\frac {3}{2}}} \,d x } \]
[In]
[Out]
Exception generated. \[ \int \frac {1}{(2+e x)^{3/2} \sqrt {12-3 e^2 x^2}} \, dx=\text {Exception raised: TypeError} \]
[In]
[Out]
Timed out. \[ \int \frac {1}{(2+e x)^{3/2} \sqrt {12-3 e^2 x^2}} \, dx=\int \frac {1}{\sqrt {12-3\,e^2\,x^2}\,{\left (e\,x+2\right )}^{3/2}} \,d x \]
[In]
[Out]