\(\int \frac {x^2}{\sqrt {1-(1+x)^2}} \, dx\) [100]

   Optimal result
   Rubi [A] (verified)
   Mathematica [A] (verified)
   Maple [A] (verified)
   Fricas [A] (verification not implemented)
   Sympy [A] (verification not implemented)
   Maxima [A] (verification not implemented)
   Giac [A] (verification not implemented)
   Mupad [F(-1)]

Optimal result

Integrand size = 17, antiderivative size = 44 \[ \int \frac {x^2}{\sqrt {1-(1+x)^2}} \, dx=\frac {3}{2} \sqrt {1-(1+x)^2}-\frac {1}{2} x \sqrt {1-(1+x)^2}+\frac {3}{2} \arcsin (1+x) \]

[Out]

3/2*arcsin(1+x)+3/2*(1-(1+x)^2)^(1/2)-1/2*x*(1-(1+x)^2)^(1/2)

Rubi [A] (verified)

Time = 0.02 (sec) , antiderivative size = 44, normalized size of antiderivative = 1.00, number of steps used = 4, number of rules used = 4, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.235, Rules used = {378, 685, 655, 222} \[ \int \frac {x^2}{\sqrt {1-(1+x)^2}} \, dx=\frac {3}{2} \arcsin (x+1)-\frac {1}{2} \sqrt {1-(x+1)^2} x+\frac {3}{2} \sqrt {1-(x+1)^2} \]

[In]

Int[x^2/Sqrt[1 - (1 + x)^2],x]

[Out]

(3*Sqrt[1 - (1 + x)^2])/2 - (x*Sqrt[1 - (1 + x)^2])/2 + (3*ArcSin[1 + x])/2

Rule 222

Int[1/Sqrt[(a_) + (b_.)*(x_)^2], x_Symbol] :> Simp[ArcSin[Rt[-b, 2]*(x/Sqrt[a])]/Rt[-b, 2], x] /; FreeQ[{a, b}
, x] && GtQ[a, 0] && NegQ[b]

Rule 378

Int[((a_) + (b_.)*(v_)^(n_))^(p_.)*(x_)^(m_.), x_Symbol] :> With[{c = Coefficient[v, x, 0], d = Coefficient[v,
 x, 1]}, Dist[1/d^(m + 1), Subst[Int[SimplifyIntegrand[(x - c)^m*(a + b*x^n)^p, x], x], x, v], x] /; NeQ[c, 0]
] /; FreeQ[{a, b, n, p}, x] && LinearQ[v, x] && IntegerQ[m]

Rule 655

Int[((d_) + (e_.)*(x_))*((a_) + (c_.)*(x_)^2)^(p_.), x_Symbol] :> Simp[e*((a + c*x^2)^(p + 1)/(2*c*(p + 1))),
x] + Dist[d, Int[(a + c*x^2)^p, x], x] /; FreeQ[{a, c, d, e, p}, x] && NeQ[p, -1]

Rule 685

Int[((d_) + (e_.)*(x_))^(m_)*((a_) + (c_.)*(x_)^2)^(p_), x_Symbol] :> Simp[e*(d + e*x)^(m - 1)*((a + c*x^2)^(p
 + 1)/(c*(m + 2*p + 1))), x] + Dist[2*c*d*((m + p)/(c*(m + 2*p + 1))), Int[(d + e*x)^(m - 1)*(a + c*x^2)^p, x]
, x] /; FreeQ[{a, c, d, e, p}, x] && EqQ[c*d^2 + a*e^2, 0] && GtQ[m, 1] && NeQ[m + 2*p + 1, 0] && IntegerQ[2*p
]

Rubi steps \begin{align*} \text {integral}& = \text {Subst}\left (\int \frac {(-1+x)^2}{\sqrt {1-x^2}} \, dx,x,1+x\right ) \\ & = -\frac {1}{2} x \sqrt {1-(1+x)^2}-\frac {3}{2} \text {Subst}\left (\int \frac {-1+x}{\sqrt {1-x^2}} \, dx,x,1+x\right ) \\ & = \frac {3}{2} \sqrt {1-(1+x)^2}-\frac {1}{2} x \sqrt {1-(1+x)^2}+\frac {3}{2} \text {Subst}\left (\int \frac {1}{\sqrt {1-x^2}} \, dx,x,1+x\right ) \\ & = \frac {3}{2} \sqrt {1-(1+x)^2}-\frac {1}{2} x \sqrt {1-(1+x)^2}+\frac {3}{2} \sin ^{-1}(1+x) \\ \end{align*}

Mathematica [A] (verified)

Time = 0.05 (sec) , antiderivative size = 55, normalized size of antiderivative = 1.25 \[ \int \frac {x^2}{\sqrt {1-(1+x)^2}} \, dx=\frac {x \left (-6-x+x^2\right )-6 \sqrt {x} \sqrt {2+x} \log \left (-\sqrt {x}+\sqrt {2+x}\right )}{2 \sqrt {-x (2+x)}} \]

[In]

Integrate[x^2/Sqrt[1 - (1 + x)^2],x]

[Out]

(x*(-6 - x + x^2) - 6*Sqrt[x]*Sqrt[2 + x]*Log[-Sqrt[x] + Sqrt[2 + x]])/(2*Sqrt[-(x*(2 + x))])

Maple [A] (verified)

Time = 0.99 (sec) , antiderivative size = 25, normalized size of antiderivative = 0.57

method result size
risch \(\frac {\left (-3+x \right ) x \left (x +2\right )}{2 \sqrt {-x \left (x +2\right )}}+\frac {3 \arcsin \left (x +1\right )}{2}\) \(25\)
pseudoelliptic \(-3 \arctan \left (\frac {\sqrt {-x \left (x +2\right )}}{x}\right )+\frac {\left (3-x \right ) \sqrt {-x \left (x +2\right )}}{2}\) \(32\)
default \(-\frac {x \sqrt {-x^{2}-2 x}}{2}+\frac {3 \sqrt {-x^{2}-2 x}}{2}+\frac {3 \arcsin \left (x +1\right )}{2}\) \(35\)
meijerg \(-\frac {4 i \left (-\frac {\sqrt {\pi }\, \sqrt {x}\, \sqrt {2}\, \left (-5 x +15\right ) \sqrt {1+\frac {x}{2}}}{40}+\frac {3 \sqrt {\pi }\, \operatorname {arcsinh}\left (\frac {\sqrt {2}\, \sqrt {x}}{2}\right )}{4}\right )}{\sqrt {\pi }}\) \(45\)
trager \(\left (\frac {3}{2}-\frac {x}{2}\right ) \sqrt {-x^{2}-2 x}-\frac {3 \operatorname {RootOf}\left (\textit {\_Z}^{2}+1\right ) \ln \left (\operatorname {RootOf}\left (\textit {\_Z}^{2}+1\right ) x +\sqrt {-x^{2}-2 x}+\operatorname {RootOf}\left (\textit {\_Z}^{2}+1\right )\right )}{2}\) \(54\)

[In]

int(x^2/(1-(x+1)^2)^(1/2),x,method=_RETURNVERBOSE)

[Out]

1/2*(-3+x)*x*(x+2)/(-x*(x+2))^(1/2)+3/2*arcsin(x+1)

Fricas [A] (verification not implemented)

none

Time = 0.29 (sec) , antiderivative size = 35, normalized size of antiderivative = 0.80 \[ \int \frac {x^2}{\sqrt {1-(1+x)^2}} \, dx=-\frac {1}{2} \, \sqrt {-x^{2} - 2 \, x} {\left (x - 3\right )} - 3 \, \arctan \left (\frac {\sqrt {-x^{2} - 2 \, x}}{x}\right ) \]

[In]

integrate(x^2/(1-(1+x)^2)^(1/2),x, algorithm="fricas")

[Out]

-1/2*sqrt(-x^2 - 2*x)*(x - 3) - 3*arctan(sqrt(-x^2 - 2*x)/x)

Sympy [A] (verification not implemented)

Time = 0.44 (sec) , antiderivative size = 26, normalized size of antiderivative = 0.59 \[ \int \frac {x^2}{\sqrt {1-(1+x)^2}} \, dx=\left (\frac {3}{2} - \frac {x}{2}\right ) \sqrt {- x^{2} - 2 x} + \frac {3 \operatorname {asin}{\left (x + 1 \right )}}{2} \]

[In]

integrate(x**2/(1-(1+x)**2)**(1/2),x)

[Out]

(3/2 - x/2)*sqrt(-x**2 - 2*x) + 3*asin(x + 1)/2

Maxima [A] (verification not implemented)

none

Time = 0.27 (sec) , antiderivative size = 36, normalized size of antiderivative = 0.82 \[ \int \frac {x^2}{\sqrt {1-(1+x)^2}} \, dx=-\frac {1}{2} \, \sqrt {-x^{2} - 2 \, x} x + \frac {3}{2} \, \sqrt {-x^{2} - 2 \, x} - \frac {3}{2} \, \arcsin \left (-x - 1\right ) \]

[In]

integrate(x^2/(1-(1+x)^2)^(1/2),x, algorithm="maxima")

[Out]

-1/2*sqrt(-x^2 - 2*x)*x + 3/2*sqrt(-x^2 - 2*x) - 3/2*arcsin(-x - 1)

Giac [A] (verification not implemented)

none

Time = 0.29 (sec) , antiderivative size = 23, normalized size of antiderivative = 0.52 \[ \int \frac {x^2}{\sqrt {1-(1+x)^2}} \, dx=-\frac {1}{2} \, \sqrt {-x^{2} - 2 \, x} {\left (x - 3\right )} + \frac {3}{2} \, \arcsin \left (x + 1\right ) \]

[In]

integrate(x^2/(1-(1+x)^2)^(1/2),x, algorithm="giac")

[Out]

-1/2*sqrt(-x^2 - 2*x)*(x - 3) + 3/2*arcsin(x + 1)

Mupad [F(-1)]

Timed out. \[ \int \frac {x^2}{\sqrt {1-(1+x)^2}} \, dx=\int \frac {x^2}{\sqrt {1-{\left (x+1\right )}^2}} \,d x \]

[In]

int(x^2/(1 - (x + 1)^2)^(1/2),x)

[Out]

int(x^2/(1 - (x + 1)^2)^(1/2), x)