\(\int \frac {x^2}{(a+8 x-8 x^2+4 x^3-x^4)^2} \, dx\) [135]

   Optimal result
   Rubi [A] (verified)
   Mathematica [C] (verified)
   Maple [C] (verified)
   Fricas [F(-1)]
   Sympy [B] (verification not implemented)
   Maxima [F]
   Giac [F]
   Mupad [B] (verification not implemented)

Optimal result

Integrand size = 26, antiderivative size = 225 \[ \int \frac {x^2}{\left (a+8 x-8 x^2+4 x^3-x^4\right )^2} \, dx=\frac {1+(-1+x)^2}{2 (4+a) \left (3+a-2 (-1+x)^2-(-1+x)^4\right )}+\frac {(4+a) \left (2+(-1+x)^2\right ) (-1+x)}{4 \left (12+7 a+a^2\right ) \left (3+a-2 (-1+x)^2-(-1+x)^4\right )}-\frac {\left (4+a+\sqrt {4+a}\right ) \arctan \left (\frac {-1+x}{\sqrt {1-\sqrt {4+a}}}\right )}{8 (3+a) (4+a) \sqrt {1-\sqrt {4+a}}}-\frac {\left (4+a-\sqrt {4+a}\right ) \arctan \left (\frac {-1+x}{\sqrt {1+\sqrt {4+a}}}\right )}{8 (3+a) (4+a) \sqrt {1+\sqrt {4+a}}}+\frac {\text {arctanh}\left (\frac {1+(-1+x)^2}{\sqrt {4+a}}\right )}{2 (4+a)^{3/2}} \]

[Out]

1/2*(1+(-1+x)^2)/(4+a)/(3+a-2*(-1+x)^2-(-1+x)^4)+1/4*(4+a)*(2+(-1+x)^2)*(-1+x)/(a^2+7*a+12)/(3+a-2*(-1+x)^2-(-
1+x)^4)+1/2*arctanh((1+(-1+x)^2)/(4+a)^(1/2))/(4+a)^(3/2)-1/8*arctan((-1+x)/(1-(4+a)^(1/2))^(1/2))*(4+a+(4+a)^
(1/2))/(3+a)/(4+a)/(1-(4+a)^(1/2))^(1/2)-1/8*arctan((-1+x)/(1+(4+a)^(1/2))^(1/2))*(4+a-(4+a)^(1/2))/(3+a)/(4+a
)/(1+(4+a)^(1/2))^(1/2)

Rubi [A] (verified)

Time = 0.18 (sec) , antiderivative size = 225, normalized size of antiderivative = 1.00, number of steps used = 11, number of rules used = 10, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.385, Rules used = {1694, 1687, 1192, 1180, 210, 12, 1121, 628, 632, 212} \[ \int \frac {x^2}{\left (a+8 x-8 x^2+4 x^3-x^4\right )^2} \, dx=\frac {(a+4) \left ((x-1)^2+2\right ) (x-1)}{4 \left (a^2+7 a+12\right ) \left (a-(x-1)^4-2 (x-1)^2+3\right )}-\frac {\left (a+\sqrt {a+4}+4\right ) \arctan \left (\frac {x-1}{\sqrt {1-\sqrt {a+4}}}\right )}{8 (a+3) (a+4) \sqrt {1-\sqrt {a+4}}}-\frac {\left (a-\sqrt {a+4}+4\right ) \arctan \left (\frac {x-1}{\sqrt {\sqrt {a+4}+1}}\right )}{8 (a+3) (a+4) \sqrt {\sqrt {a+4}+1}}+\frac {\text {arctanh}\left (\frac {(x-1)^2+1}{\sqrt {a+4}}\right )}{2 (a+4)^{3/2}}+\frac {(x-1)^2+1}{2 (a+4) \left (a-(x-1)^4-2 (x-1)^2+3\right )} \]

[In]

Int[x^2/(a + 8*x - 8*x^2 + 4*x^3 - x^4)^2,x]

[Out]

(1 + (-1 + x)^2)/(2*(4 + a)*(3 + a - 2*(-1 + x)^2 - (-1 + x)^4)) + ((4 + a)*(2 + (-1 + x)^2)*(-1 + x))/(4*(12
+ 7*a + a^2)*(3 + a - 2*(-1 + x)^2 - (-1 + x)^4)) - ((4 + a + Sqrt[4 + a])*ArcTan[(-1 + x)/Sqrt[1 - Sqrt[4 + a
]]])/(8*(3 + a)*(4 + a)*Sqrt[1 - Sqrt[4 + a]]) - ((4 + a - Sqrt[4 + a])*ArcTan[(-1 + x)/Sqrt[1 + Sqrt[4 + a]]]
)/(8*(3 + a)*(4 + a)*Sqrt[1 + Sqrt[4 + a]]) + ArcTanh[(1 + (-1 + x)^2)/Sqrt[4 + a]]/(2*(4 + a)^(3/2))

Rule 12

Int[(a_)*(u_), x_Symbol] :> Dist[a, Int[u, x], x] /; FreeQ[a, x] &&  !MatchQ[u, (b_)*(v_) /; FreeQ[b, x]]

Rule 210

Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> Simp[(-(Rt[-a, 2]*Rt[-b, 2])^(-1))*ArcTan[Rt[-b, 2]*(x/Rt[-a, 2])
], x] /; FreeQ[{a, b}, x] && PosQ[a/b] && (LtQ[a, 0] || LtQ[b, 0])

Rule 212

Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> Simp[(1/(Rt[a, 2]*Rt[-b, 2]))*ArcTanh[Rt[-b, 2]*(x/Rt[a, 2])], x]
 /; FreeQ[{a, b}, x] && NegQ[a/b] && (GtQ[a, 0] || LtQ[b, 0])

Rule 628

Int[((a_.) + (b_.)*(x_) + (c_.)*(x_)^2)^(p_), x_Symbol] :> Simp[(b + 2*c*x)*((a + b*x + c*x^2)^(p + 1)/((p + 1
)*(b^2 - 4*a*c))), x] - Dist[2*c*((2*p + 3)/((p + 1)*(b^2 - 4*a*c))), Int[(a + b*x + c*x^2)^(p + 1), x], x] /;
 FreeQ[{a, b, c}, x] && NeQ[b^2 - 4*a*c, 0] && LtQ[p, -1] && NeQ[p, -3/2] && IntegerQ[4*p]

Rule 632

Int[((a_.) + (b_.)*(x_) + (c_.)*(x_)^2)^(-1), x_Symbol] :> Dist[-2, Subst[Int[1/Simp[b^2 - 4*a*c - x^2, x], x]
, x, b + 2*c*x], x] /; FreeQ[{a, b, c}, x] && NeQ[b^2 - 4*a*c, 0]

Rule 1121

Int[(x_)*((a_) + (b_.)*(x_)^2 + (c_.)*(x_)^4)^(p_.), x_Symbol] :> Dist[1/2, Subst[Int[(a + b*x + c*x^2)^p, x],
 x, x^2], x] /; FreeQ[{a, b, c, p}, x]

Rule 1180

Int[((d_) + (e_.)*(x_)^2)/((a_) + (b_.)*(x_)^2 + (c_.)*(x_)^4), x_Symbol] :> With[{q = Rt[b^2 - 4*a*c, 2]}, Di
st[e/2 + (2*c*d - b*e)/(2*q), Int[1/(b/2 - q/2 + c*x^2), x], x] + Dist[e/2 - (2*c*d - b*e)/(2*q), Int[1/(b/2 +
 q/2 + c*x^2), x], x]] /; FreeQ[{a, b, c, d, e}, x] && NeQ[b^2 - 4*a*c, 0] && NeQ[c*d^2 - a*e^2, 0] && PosQ[b^
2 - 4*a*c]

Rule 1192

Int[((d_) + (e_.)*(x_)^2)*((a_) + (b_.)*(x_)^2 + (c_.)*(x_)^4)^(p_), x_Symbol] :> Simp[x*(a*b*e - d*(b^2 - 2*a
*c) - c*(b*d - 2*a*e)*x^2)*((a + b*x^2 + c*x^4)^(p + 1)/(2*a*(p + 1)*(b^2 - 4*a*c))), x] + Dist[1/(2*a*(p + 1)
*(b^2 - 4*a*c)), Int[Simp[(2*p + 3)*d*b^2 - a*b*e - 2*a*c*d*(4*p + 5) + (4*p + 7)*(d*b - 2*a*e)*c*x^2, x]*(a +
 b*x^2 + c*x^4)^(p + 1), x], x] /; FreeQ[{a, b, c, d, e}, x] && NeQ[b^2 - 4*a*c, 0] && NeQ[c*d^2 - b*d*e + a*e
^2, 0] && LtQ[p, -1] && IntegerQ[2*p]

Rule 1687

Int[(Pq_)*((a_) + (b_.)*(x_)^2 + (c_.)*(x_)^4)^(p_), x_Symbol] :> Module[{q = Expon[Pq, x], k}, Int[Sum[Coeff[
Pq, x, 2*k]*x^(2*k), {k, 0, q/2}]*(a + b*x^2 + c*x^4)^p, x] + Int[x*Sum[Coeff[Pq, x, 2*k + 1]*x^(2*k), {k, 0,
(q - 1)/2}]*(a + b*x^2 + c*x^4)^p, x]] /; FreeQ[{a, b, c, p}, x] && PolyQ[Pq, x] &&  !PolyQ[Pq, x^2]

Rule 1694

Int[(Pq_)*(Q4_)^(p_), x_Symbol] :> With[{a = Coeff[Q4, x, 0], b = Coeff[Q4, x, 1], c = Coeff[Q4, x, 2], d = Co
eff[Q4, x, 3], e = Coeff[Q4, x, 4]}, Subst[Int[SimplifyIntegrand[(Pq /. x -> -d/(4*e) + x)*(a + d^4/(256*e^3)
- b*(d/(8*e)) + (c - 3*(d^2/(8*e)))*x^2 + e*x^4)^p, x], x], x, d/(4*e) + x] /; EqQ[d^3 - 4*c*d*e + 8*b*e^2, 0]
 && NeQ[d, 0]] /; FreeQ[p, x] && PolyQ[Pq, x] && PolyQ[Q4, x, 4] &&  !IGtQ[p, 0]

Rubi steps \begin{align*} \text {integral}& = \text {Subst}\left (\int \frac {(1+x)^2}{\left (3+a-2 x^2-x^4\right )^2} \, dx,x,-1+x\right ) \\ & = \text {Subst}\left (\int \frac {2 x}{\left (3+a-2 x^2-x^4\right )^2} \, dx,x,-1+x\right )+\text {Subst}\left (\int \frac {1+x^2}{\left (3+a-2 x^2-x^4\right )^2} \, dx,x,-1+x\right ) \\ & = \frac {(4+a) \left (2+(-1+x)^2\right ) (-1+x)}{4 \left (12+7 a+a^2\right ) \left (3+a-2 (-1+x)^2-(-1+x)^4\right )}+2 \text {Subst}\left (\int \frac {x}{\left (3+a-2 x^2-x^4\right )^2} \, dx,x,-1+x\right )-\frac {\text {Subst}\left (\int \frac {-4 (4+a)-2 (4+a) x^2}{3+a-2 x^2-x^4} \, dx,x,-1+x\right )}{8 \left (12+7 a+a^2\right )} \\ & = \frac {(4+a) \left (2+(-1+x)^2\right ) (-1+x)}{4 \left (12+7 a+a^2\right ) \left (3+a-2 (-1+x)^2-(-1+x)^4\right )}+\frac {\left (4+a-\sqrt {4+a}\right ) \text {Subst}\left (\int \frac {1}{-1-\sqrt {4+a}-x^2} \, dx,x,-1+x\right )}{8 \left (12+7 a+a^2\right )}+\frac {\left (4+a+\sqrt {4+a}\right ) \text {Subst}\left (\int \frac {1}{-1+\sqrt {4+a}-x^2} \, dx,x,-1+x\right )}{8 \left (12+7 a+a^2\right )}+\text {Subst}\left (\int \frac {1}{\left (3+a-2 x-x^2\right )^2} \, dx,x,(-1+x)^2\right ) \\ & = \frac {1+(-1+x)^2}{2 (4+a) \left (3+a-2 (-1+x)^2-(-1+x)^4\right )}+\frac {(4+a) \left (2+(-1+x)^2\right ) (-1+x)}{4 \left (12+7 a+a^2\right ) \left (3+a-2 (-1+x)^2-(-1+x)^4\right )}+\frac {\left (4+a+\sqrt {4+a}\right ) \tan ^{-1}\left (\frac {1-x}{\sqrt {1-\sqrt {4+a}}}\right )}{8 \left (12+7 a+a^2\right ) \sqrt {1-\sqrt {4+a}}}+\frac {\left (4+a-\sqrt {4+a}\right ) \tan ^{-1}\left (\frac {1-x}{\sqrt {1+\sqrt {4+a}}}\right )}{8 \left (12+7 a+a^2\right ) \sqrt {1+\sqrt {4+a}}}+\frac {\text {Subst}\left (\int \frac {1}{3+a-2 x-x^2} \, dx,x,(-1+x)^2\right )}{2 (4+a)} \\ & = \frac {1+(-1+x)^2}{2 (4+a) \left (3+a-2 (-1+x)^2-(-1+x)^4\right )}+\frac {(4+a) \left (2+(-1+x)^2\right ) (-1+x)}{4 \left (12+7 a+a^2\right ) \left (3+a-2 (-1+x)^2-(-1+x)^4\right )}+\frac {\left (4+a+\sqrt {4+a}\right ) \tan ^{-1}\left (\frac {1-x}{\sqrt {1-\sqrt {4+a}}}\right )}{8 \left (12+7 a+a^2\right ) \sqrt {1-\sqrt {4+a}}}+\frac {\left (4+a-\sqrt {4+a}\right ) \tan ^{-1}\left (\frac {1-x}{\sqrt {1+\sqrt {4+a}}}\right )}{8 \left (12+7 a+a^2\right ) \sqrt {1+\sqrt {4+a}}}-\frac {\text {Subst}\left (\int \frac {1}{4 (4+a)-x^2} \, dx,x,-2 \left (1+(-1+x)^2\right )\right )}{4+a} \\ & = \frac {1+(-1+x)^2}{2 (4+a) \left (3+a-2 (-1+x)^2-(-1+x)^4\right )}+\frac {(4+a) \left (2+(-1+x)^2\right ) (-1+x)}{4 \left (12+7 a+a^2\right ) \left (3+a-2 (-1+x)^2-(-1+x)^4\right )}+\frac {\left (4+a+\sqrt {4+a}\right ) \tan ^{-1}\left (\frac {1-x}{\sqrt {1-\sqrt {4+a}}}\right )}{8 \left (12+7 a+a^2\right ) \sqrt {1-\sqrt {4+a}}}+\frac {\left (4+a-\sqrt {4+a}\right ) \tan ^{-1}\left (\frac {1-x}{\sqrt {1+\sqrt {4+a}}}\right )}{8 \left (12+7 a+a^2\right ) \sqrt {1+\sqrt {4+a}}}+\frac {\tanh ^{-1}\left (\frac {1+(-1+x)^2}{\sqrt {4+a}}\right )}{2 (4+a)^{3/2}} \\ \end{align*}

Mathematica [C] (verified)

Result contains higher order function than in optimal. Order 9 vs. order 3 in optimal.

Time = 0.05 (sec) , antiderivative size = 182, normalized size of antiderivative = 0.81 \[ \int \frac {x^2}{\left (a+8 x-8 x^2+4 x^3-x^4\right )^2} \, dx=\frac {2 x \left (4-3 x+2 x^2\right )+a \left (1+x-x^2+x^3\right )}{4 (3+a) (4+a) \left (a-x \left (-8+8 x-4 x^2+x^3\right )\right )}-\frac {\text {RootSum}\left [a+8 \text {$\#$1}-8 \text {$\#$1}^2+4 \text {$\#$1}^3-\text {$\#$1}^4\&,\frac {-a \log (x-\text {$\#$1})+4 \log (x-\text {$\#$1}) \text {$\#$1}+2 a \log (x-\text {$\#$1}) \text {$\#$1}+4 \log (x-\text {$\#$1}) \text {$\#$1}^2+a \log (x-\text {$\#$1}) \text {$\#$1}^2}{-2+4 \text {$\#$1}-3 \text {$\#$1}^2+\text {$\#$1}^3}\&\right ]}{16 \left (12+7 a+a^2\right )} \]

[In]

Integrate[x^2/(a + 8*x - 8*x^2 + 4*x^3 - x^4)^2,x]

[Out]

(2*x*(4 - 3*x + 2*x^2) + a*(1 + x - x^2 + x^3))/(4*(3 + a)*(4 + a)*(a - x*(-8 + 8*x - 4*x^2 + x^3))) - RootSum
[a + 8*#1 - 8*#1^2 + 4*#1^3 - #1^4 & , (-(a*Log[x - #1]) + 4*Log[x - #1]*#1 + 2*a*Log[x - #1]*#1 + 4*Log[x - #
1]*#1^2 + a*Log[x - #1]*#1^2)/(-2 + 4*#1 - 3*#1^2 + #1^3) & ]/(16*(12 + 7*a + a^2))

Maple [C] (verified)

Result contains higher order function than in optimal. Order 9 vs. order 3.

Time = 0.06 (sec) , antiderivative size = 160, normalized size of antiderivative = 0.71

method result size
default \(\frac {\frac {x^{3}}{4 a +12}-\frac {\left (6+a \right ) x^{2}}{4 \left (3+a \right ) \left (4+a \right )}+\frac {\left (a +8\right ) x}{4 \left (3+a \right ) \left (4+a \right )}+\frac {a}{4 \left (4+a \right ) \left (3+a \right )}}{-x^{4}+4 x^{3}-8 x^{2}+a +8 x}+\frac {\munderset {\textit {\_R} =\operatorname {RootOf}\left (\textit {\_Z}^{4}-4 \textit {\_Z}^{3}+8 \textit {\_Z}^{2}-8 \textit {\_Z} -a \right )}{\sum }\frac {\left (\textit {\_R}^{2} \left (4+a \right )+2 \left (a +2\right ) \textit {\_R} -a \right ) \ln \left (x -\textit {\_R} \right )}{-\textit {\_R}^{3}+3 \textit {\_R}^{2}-4 \textit {\_R} +2}}{16 \left (4+a \right ) \left (3+a \right )}\) \(160\)
risch \(\frac {\frac {x^{3}}{4 a +12}-\frac {\left (6+a \right ) x^{2}}{4 \left (3+a \right ) \left (4+a \right )}+\frac {\left (a +8\right ) x}{4 \left (3+a \right ) \left (4+a \right )}+\frac {a}{4 \left (4+a \right ) \left (3+a \right )}}{-x^{4}+4 x^{3}-8 x^{2}+a +8 x}+\frac {\left (\munderset {\textit {\_R} =\operatorname {RootOf}\left (\textit {\_Z}^{4}-4 \textit {\_Z}^{3}+8 \textit {\_Z}^{2}-8 \textit {\_Z} -a \right )}{\sum }\frac {\left (\frac {\textit {\_R}^{2}}{3+a}+\frac {2 \left (a +2\right ) \textit {\_R}}{\left (3+a \right ) \left (4+a \right )}-\frac {a}{\left (4+a \right ) \left (3+a \right )}\right ) \ln \left (x -\textit {\_R} \right )}{-\textit {\_R}^{3}+3 \textit {\_R}^{2}-4 \textit {\_R} +2}\right )}{16}\) \(172\)

[In]

int(x^2/(-x^4+4*x^3-8*x^2+a+8*x)^2,x,method=_RETURNVERBOSE)

[Out]

(1/4/(3+a)*x^3-1/4*(6+a)/(3+a)/(4+a)*x^2+1/4*(a+8)/(3+a)/(4+a)*x+1/4*a/(4+a)/(3+a))/(-x^4+4*x^3-8*x^2+a+8*x)+1
/16/(4+a)/(3+a)*sum((_R^2*(4+a)+2*(a+2)*_R-a)/(-_R^3+3*_R^2-4*_R+2)*ln(x-_R),_R=RootOf(_Z^4-4*_Z^3+8*_Z^2-8*_Z
-a))

Fricas [F(-1)]

Timed out. \[ \int \frac {x^2}{\left (a+8 x-8 x^2+4 x^3-x^4\right )^2} \, dx=\text {Timed out} \]

[In]

integrate(x^2/(-x^4+4*x^3-8*x^2+a+8*x)^2,x, algorithm="fricas")

[Out]

Timed out

Sympy [B] (verification not implemented)

Leaf count of result is larger than twice the leaf count of optimal. 561 vs. \(2 (185) = 370\).

Time = 18.36 (sec) , antiderivative size = 561, normalized size of antiderivative = 2.49 \[ \int \frac {x^2}{\left (a+8 x-8 x^2+4 x^3-x^4\right )^2} \, dx=\frac {- a + x^{3} \left (- a - 4\right ) + x^{2} \left (a + 6\right ) + x \left (- a - 8\right )}{- 4 a^{3} - 28 a^{2} - 48 a + x^{4} \cdot \left (4 a^{2} + 28 a + 48\right ) + x^{3} \left (- 16 a^{2} - 112 a - 192\right ) + x^{2} \cdot \left (32 a^{2} + 224 a + 384\right ) + x \left (- 32 a^{2} - 224 a - 384\right )} + \operatorname {RootSum} {\left (t^{4} \cdot \left (65536 a^{9} + 2162688 a^{8} + 31653888 a^{7} + 269680640 a^{6} + 1473773568 a^{5} + 5357174784 a^{4} + 12952010752 a^{3} + 20082327552 a^{2} + 18119393280 a + 7247757312\right ) + t^{2} \left (- 9728 a^{6} - 209408 a^{5} - 1878016 a^{4} - 8986624 a^{3} - 24215552 a^{2} - 34865152 a - 20971520\right ) + t \left (256 a^{5} + 5888 a^{4} + 53248 a^{3} + 237568 a^{2} + 524288 a + 458752\right ) - a^{4} + 144 a^{3} + 1024 a^{2} + 1792 a, \left ( t \mapsto t \log {\left (x + \frac {4096 t^{3} a^{12} - 61440 t^{3} a^{11} - 5480448 t^{3} a^{10} - 111403008 t^{3} a^{9} - 1227173888 t^{3} a^{8} - 8682876928 t^{3} a^{7} - 42187440128 t^{3} a^{6} - 144630284288 t^{3} a^{5} - 350972280832 t^{3} a^{4} - 591750234112 t^{3} a^{3} - 660716126208 t^{3} a^{2} - 439848271872 t^{3} a - 132271570944 t^{3} - 28672 t^{2} a^{10} - 993280 t^{2} a^{9} - 15400960 t^{2} a^{8} - 140742656 t^{2} a^{7} - 839462912 t^{2} a^{6} - 3414427648 t^{2} a^{5} - 9590087680 t^{2} a^{4} - 18363547648 t^{2} a^{3} - 22938255360 t^{2} a^{2} - 16873684992 t^{2} a - 5549064192 t^{2} - 848 t a^{9} - 6096 t a^{8} + 174608 t a^{7} + 3323792 t a^{6} + 26276224 t a^{5} + 119009280 t a^{4} + 332017664 t a^{3} + 566497280 t a^{2} + 544112640 t a + 225837056 t + 11 a^{8} + 958 a^{7} + 17419 a^{6} + 142964 a^{5} + 632632 a^{4} + 1567552 a^{3} + 2049792 a^{2} + 1100800 a}{a^{8} + 870 a^{7} + 18289 a^{6} + 165176 a^{5} + 824560 a^{4} + 2452288 a^{3} + 4340224 a^{2} + 4229120 a + 1748992} \right )} \right )\right )} \]

[In]

integrate(x**2/(-x**4+4*x**3-8*x**2+a+8*x)**2,x)

[Out]

(-a + x**3*(-a - 4) + x**2*(a + 6) + x*(-a - 8))/(-4*a**3 - 28*a**2 - 48*a + x**4*(4*a**2 + 28*a + 48) + x**3*
(-16*a**2 - 112*a - 192) + x**2*(32*a**2 + 224*a + 384) + x*(-32*a**2 - 224*a - 384)) + RootSum(_t**4*(65536*a
**9 + 2162688*a**8 + 31653888*a**7 + 269680640*a**6 + 1473773568*a**5 + 5357174784*a**4 + 12952010752*a**3 + 2
0082327552*a**2 + 18119393280*a + 7247757312) + _t**2*(-9728*a**6 - 209408*a**5 - 1878016*a**4 - 8986624*a**3
- 24215552*a**2 - 34865152*a - 20971520) + _t*(256*a**5 + 5888*a**4 + 53248*a**3 + 237568*a**2 + 524288*a + 45
8752) - a**4 + 144*a**3 + 1024*a**2 + 1792*a, Lambda(_t, _t*log(x + (4096*_t**3*a**12 - 61440*_t**3*a**11 - 54
80448*_t**3*a**10 - 111403008*_t**3*a**9 - 1227173888*_t**3*a**8 - 8682876928*_t**3*a**7 - 42187440128*_t**3*a
**6 - 144630284288*_t**3*a**5 - 350972280832*_t**3*a**4 - 591750234112*_t**3*a**3 - 660716126208*_t**3*a**2 -
439848271872*_t**3*a - 132271570944*_t**3 - 28672*_t**2*a**10 - 993280*_t**2*a**9 - 15400960*_t**2*a**8 - 1407
42656*_t**2*a**7 - 839462912*_t**2*a**6 - 3414427648*_t**2*a**5 - 9590087680*_t**2*a**4 - 18363547648*_t**2*a*
*3 - 22938255360*_t**2*a**2 - 16873684992*_t**2*a - 5549064192*_t**2 - 848*_t*a**9 - 6096*_t*a**8 + 174608*_t*
a**7 + 3323792*_t*a**6 + 26276224*_t*a**5 + 119009280*_t*a**4 + 332017664*_t*a**3 + 566497280*_t*a**2 + 544112
640*_t*a + 225837056*_t + 11*a**8 + 958*a**7 + 17419*a**6 + 142964*a**5 + 632632*a**4 + 1567552*a**3 + 2049792
*a**2 + 1100800*a)/(a**8 + 870*a**7 + 18289*a**6 + 165176*a**5 + 824560*a**4 + 2452288*a**3 + 4340224*a**2 + 4
229120*a + 1748992))))

Maxima [F]

\[ \int \frac {x^2}{\left (a+8 x-8 x^2+4 x^3-x^4\right )^2} \, dx=\int { \frac {x^{2}}{{\left (x^{4} - 4 \, x^{3} + 8 \, x^{2} - a - 8 \, x\right )}^{2}} \,d x } \]

[In]

integrate(x^2/(-x^4+4*x^3-8*x^2+a+8*x)^2,x, algorithm="maxima")

[Out]

-1/4*((a + 4)*x^3 - (a + 6)*x^2 + (a + 8)*x + a)/((a^2 + 7*a + 12)*x^4 - 4*(a^2 + 7*a + 12)*x^3 - a^3 + 8*(a^2
 + 7*a + 12)*x^2 - 7*a^2 - 8*(a^2 + 7*a + 12)*x - 12*a) - 1/4*integrate(((a + 4)*x^2 + 2*(a + 2)*x - a)/(x^4 -
 4*x^3 + 8*x^2 - a - 8*x), x)/(a^2 + 7*a + 12)

Giac [F]

\[ \int \frac {x^2}{\left (a+8 x-8 x^2+4 x^3-x^4\right )^2} \, dx=\int { \frac {x^{2}}{{\left (x^{4} - 4 \, x^{3} + 8 \, x^{2} - a - 8 \, x\right )}^{2}} \,d x } \]

[In]

integrate(x^2/(-x^4+4*x^3-8*x^2+a+8*x)^2,x, algorithm="giac")

[Out]

integrate(x^2/(x^4 - 4*x^3 + 8*x^2 - a - 8*x)^2, x)

Mupad [B] (verification not implemented)

Time = 9.44 (sec) , antiderivative size = 1218, normalized size of antiderivative = 5.41 \[ \int \frac {x^2}{\left (a+8 x-8 x^2+4 x^3-x^4\right )^2} \, dx=\text {Too large to display} \]

[In]

int(x^2/(a + 8*x - 8*x^2 + 4*x^3 - x^4)^2,x)

[Out]

symsum(log((x*(40*a + 7*a^2 + 56))/(8*(816*a + 460*a^2 + 129*a^3 + 18*a^4 + a^5 + 576)) - (48*a + 12*a^2 - a^3
)/(64*(816*a + 460*a^2 + 129*a^3 + 18*a^4 + a^5 + 576)) - root(12952010752*a^3*z^4 + 31653888*a^7*z^4 + 216268
8*a^8*z^4 + 65536*a^9*z^4 + 18119393280*a*z^4 + 20082327552*a^2*z^4 + 1473773568*a^5*z^4 + 5357174784*a^4*z^4
+ 269680640*a^6*z^4 + 7247757312*z^4 - 24215552*a^2*z^2 - 8986624*a^3*z^2 - 1878016*a^4*z^2 - 209408*a^5*z^2 -
 9728*a^6*z^2 - 34865152*a*z^2 - 20971520*z^2 + 237568*a^2*z + 53248*a^3*z + 5888*a^4*z + 256*a^5*z + 524288*a
*z + 458752*z + 1792*a + 1024*a^2 + 144*a^3 - a^4, z, k)*((28160*a + 11328*a^2 + 2064*a^3 + 144*a^4 + 26624)/(
64*(816*a + 460*a^2 + 129*a^3 + 18*a^4 + a^5 + 576)) + root(12952010752*a^3*z^4 + 31653888*a^7*z^4 + 2162688*a
^8*z^4 + 65536*a^9*z^4 + 18119393280*a*z^4 + 20082327552*a^2*z^4 + 1473773568*a^5*z^4 + 5357174784*a^4*z^4 + 2
69680640*a^6*z^4 + 7247757312*z^4 - 24215552*a^2*z^2 - 8986624*a^3*z^2 - 1878016*a^4*z^2 - 209408*a^5*z^2 - 97
28*a^6*z^2 - 34865152*a*z^2 - 20971520*z^2 + 237568*a^2*z + 53248*a^3*z + 5888*a^4*z + 256*a^5*z + 524288*a*z
+ 458752*z + 1792*a + 1024*a^2 + 144*a^3 - a^4, z, k)*(root(12952010752*a^3*z^4 + 31653888*a^7*z^4 + 2162688*a
^8*z^4 + 65536*a^9*z^4 + 18119393280*a*z^4 + 20082327552*a^2*z^4 + 1473773568*a^5*z^4 + 5357174784*a^4*z^4 + 2
69680640*a^6*z^4 + 7247757312*z^4 - 24215552*a^2*z^2 - 8986624*a^3*z^2 - 1878016*a^4*z^2 - 209408*a^5*z^2 - 97
28*a^6*z^2 - 34865152*a*z^2 - 20971520*z^2 + 237568*a^2*z + 53248*a^3*z + 5888*a^4*z + 256*a^5*z + 524288*a*z
+ 458752*z + 1792*a + 1024*a^2 + 144*a^3 - a^4, z, k)*((15728640*a + 10878976*a^2 + 3997696*a^3 + 823296*a^4 +
 90112*a^5 + 4096*a^6 + 9437184)/(64*(816*a + 460*a^2 + 129*a^3 + 18*a^4 + a^5 + 576)) - (x*(1966080*a + 13598
72*a^2 + 499712*a^3 + 102912*a^4 + 11264*a^5 + 512*a^6 + 1179648))/(8*(816*a + 460*a^2 + 129*a^3 + 18*a^4 + a^
5 + 576))) - (1359872*a + 749568*a^2 + 205824*a^3 + 28160*a^4 + 1536*a^5 + 983040)/(64*(816*a + 460*a^2 + 129*
a^3 + 18*a^4 + a^5 + 576)) + (x*(104448*a + 58880*a^2 + 16512*a^3 + 2304*a^4 + 128*a^5 + 73728))/(8*(816*a + 4
60*a^2 + 129*a^3 + 18*a^4 + a^5 + 576))) + (x*(448*a + 104*a^2 - 2*a^3 - 2*a^4 + 512))/(8*(816*a + 460*a^2 + 1
29*a^3 + 18*a^4 + a^5 + 576))))*root(12952010752*a^3*z^4 + 31653888*a^7*z^4 + 2162688*a^8*z^4 + 65536*a^9*z^4
+ 18119393280*a*z^4 + 20082327552*a^2*z^4 + 1473773568*a^5*z^4 + 5357174784*a^4*z^4 + 269680640*a^6*z^4 + 7247
757312*z^4 - 24215552*a^2*z^2 - 8986624*a^3*z^2 - 1878016*a^4*z^2 - 209408*a^5*z^2 - 9728*a^6*z^2 - 34865152*a
*z^2 - 20971520*z^2 + 237568*a^2*z + 53248*a^3*z + 5888*a^4*z + 256*a^5*z + 524288*a*z + 458752*z + 1792*a + 1
024*a^2 + 144*a^3 - a^4, z, k), k, 1, 4) + (x^3/(4*(a + 3)) + a/(4*(a + 3)*(a + 4)) - (x^2*(a + 6))/(4*(a + 3)
*(a + 4)) + (x*(a + 8))/(4*(a + 3)*(a + 4)))/(a + 8*x - 8*x^2 + 4*x^3 - x^4)