\(\int \frac {b+2 c x}{b x+c x^2} \, dx\) [164]

   Optimal result
   Rubi [A] (verified)
   Mathematica [A] (verified)
   Maple [A] (verified)
   Fricas [A] (verification not implemented)
   Sympy [A] (verification not implemented)
   Maxima [A] (verification not implemented)
   Giac [A] (verification not implemented)
   Mupad [B] (verification not implemented)

Optimal result

Integrand size = 18, antiderivative size = 10 \[ \int \frac {b+2 c x}{b x+c x^2} \, dx=\log \left (b x+c x^2\right ) \]

[Out]

ln(c*x^2+b*x)

Rubi [A] (verified)

Time = 0.00 (sec) , antiderivative size = 10, normalized size of antiderivative = 1.00, number of steps used = 1, number of rules used = 1, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.056, Rules used = {642} \[ \int \frac {b+2 c x}{b x+c x^2} \, dx=\log \left (b x+c x^2\right ) \]

[In]

Int[(b + 2*c*x)/(b*x + c*x^2),x]

[Out]

Log[b*x + c*x^2]

Rule 642

Int[((d_) + (e_.)*(x_))/((a_.) + (b_.)*(x_) + (c_.)*(x_)^2), x_Symbol] :> Simp[d*(Log[RemoveContent[a + b*x +
c*x^2, x]]/b), x] /; FreeQ[{a, b, c, d, e}, x] && EqQ[2*c*d - b*e, 0]

Rubi steps \begin{align*} \text {integral}& = \log \left (b x+c x^2\right ) \\ \end{align*}

Mathematica [A] (verified)

Time = 0.00 (sec) , antiderivative size = 9, normalized size of antiderivative = 0.90 \[ \int \frac {b+2 c x}{b x+c x^2} \, dx=\log (x)+\log (b+c x) \]

[In]

Integrate[(b + 2*c*x)/(b*x + c*x^2),x]

[Out]

Log[x] + Log[b + c*x]

Maple [A] (verified)

Time = 0.72 (sec) , antiderivative size = 9, normalized size of antiderivative = 0.90

method result size
default \(\ln \left (x \left (c x +b \right )\right )\) \(9\)
norman \(\ln \left (x \right )+\ln \left (c x +b \right )\) \(10\)
parallelrisch \(\ln \left (x \right )+\ln \left (c x +b \right )\) \(10\)
derivativedivides \(\ln \left (c \,x^{2}+b x \right )\) \(11\)
risch \(\ln \left (c \,x^{2}+b x \right )\) \(11\)

[In]

int((2*c*x+b)/(c*x^2+b*x),x,method=_RETURNVERBOSE)

[Out]

ln(x*(c*x+b))

Fricas [A] (verification not implemented)

none

Time = 0.26 (sec) , antiderivative size = 10, normalized size of antiderivative = 1.00 \[ \int \frac {b+2 c x}{b x+c x^2} \, dx=\log \left (c x^{2} + b x\right ) \]

[In]

integrate((2*c*x+b)/(c*x^2+b*x),x, algorithm="fricas")

[Out]

log(c*x^2 + b*x)

Sympy [A] (verification not implemented)

Time = 0.06 (sec) , antiderivative size = 8, normalized size of antiderivative = 0.80 \[ \int \frac {b+2 c x}{b x+c x^2} \, dx=\log {\left (b x + c x^{2} \right )} \]

[In]

integrate((2*c*x+b)/(c*x**2+b*x),x)

[Out]

log(b*x + c*x**2)

Maxima [A] (verification not implemented)

none

Time = 0.19 (sec) , antiderivative size = 10, normalized size of antiderivative = 1.00 \[ \int \frac {b+2 c x}{b x+c x^2} \, dx=\log \left (c x^{2} + b x\right ) \]

[In]

integrate((2*c*x+b)/(c*x^2+b*x),x, algorithm="maxima")

[Out]

log(c*x^2 + b*x)

Giac [A] (verification not implemented)

none

Time = 0.28 (sec) , antiderivative size = 11, normalized size of antiderivative = 1.10 \[ \int \frac {b+2 c x}{b x+c x^2} \, dx=\log \left ({\left | c x^{2} + b x \right |}\right ) \]

[In]

integrate((2*c*x+b)/(c*x^2+b*x),x, algorithm="giac")

[Out]

log(abs(c*x^2 + b*x))

Mupad [B] (verification not implemented)

Time = 9.15 (sec) , antiderivative size = 8, normalized size of antiderivative = 0.80 \[ \int \frac {b+2 c x}{b x+c x^2} \, dx=\ln \left (x\,\left (b+c\,x\right )\right ) \]

[In]

int((b + 2*c*x)/(b*x + c*x^2),x)

[Out]

log(x*(b + c*x))