\(\int \frac {(d+e x)^2}{a+b x^2+c x^4} \, dx\) [338]

   Optimal result
   Rubi [A] (verified)
   Mathematica [A] (verified)
   Maple [C] (verified)
   Fricas [C] (verification not implemented)
   Sympy [F(-1)]
   Maxima [F]
   Giac [B] (verification not implemented)
   Mupad [B] (verification not implemented)

Optimal result

Integrand size = 22, antiderivative size = 224 \[ \int \frac {(d+e x)^2}{a+b x^2+c x^4} \, dx=\frac {\left (e^2+\frac {2 c d^2-b e^2}{\sqrt {b^2-4 a c}}\right ) \arctan \left (\frac {\sqrt {2} \sqrt {c} x}{\sqrt {b-\sqrt {b^2-4 a c}}}\right )}{\sqrt {2} \sqrt {c} \sqrt {b-\sqrt {b^2-4 a c}}}+\frac {\left (e^2-\frac {2 c d^2-b e^2}{\sqrt {b^2-4 a c}}\right ) \arctan \left (\frac {\sqrt {2} \sqrt {c} x}{\sqrt {b+\sqrt {b^2-4 a c}}}\right )}{\sqrt {2} \sqrt {c} \sqrt {b+\sqrt {b^2-4 a c}}}-\frac {2 d e \text {arctanh}\left (\frac {b+2 c x^2}{\sqrt {b^2-4 a c}}\right )}{\sqrt {b^2-4 a c}} \]

[Out]

-2*d*e*arctanh((2*c*x^2+b)/(-4*a*c+b^2)^(1/2))/(-4*a*c+b^2)^(1/2)+1/2*arctan(x*2^(1/2)*c^(1/2)/(b-(-4*a*c+b^2)
^(1/2))^(1/2))*(e^2+(-b*e^2+2*c*d^2)/(-4*a*c+b^2)^(1/2))*2^(1/2)/c^(1/2)/(b-(-4*a*c+b^2)^(1/2))^(1/2)+1/2*arct
an(x*2^(1/2)*c^(1/2)/(b+(-4*a*c+b^2)^(1/2))^(1/2))*(e^2+(b*e^2-2*c*d^2)/(-4*a*c+b^2)^(1/2))*2^(1/2)/c^(1/2)/(b
+(-4*a*c+b^2)^(1/2))^(1/2)

Rubi [A] (verified)

Time = 0.19 (sec) , antiderivative size = 224, normalized size of antiderivative = 1.00, number of steps used = 8, number of rules used = 7, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.318, Rules used = {1687, 1180, 211, 12, 1121, 632, 212} \[ \int \frac {(d+e x)^2}{a+b x^2+c x^4} \, dx=\frac {\arctan \left (\frac {\sqrt {2} \sqrt {c} x}{\sqrt {b-\sqrt {b^2-4 a c}}}\right ) \left (\frac {2 c d^2-b e^2}{\sqrt {b^2-4 a c}}+e^2\right )}{\sqrt {2} \sqrt {c} \sqrt {b-\sqrt {b^2-4 a c}}}+\frac {\arctan \left (\frac {\sqrt {2} \sqrt {c} x}{\sqrt {\sqrt {b^2-4 a c}+b}}\right ) \left (e^2-\frac {2 c d^2-b e^2}{\sqrt {b^2-4 a c}}\right )}{\sqrt {2} \sqrt {c} \sqrt {\sqrt {b^2-4 a c}+b}}-\frac {2 d e \text {arctanh}\left (\frac {b+2 c x^2}{\sqrt {b^2-4 a c}}\right )}{\sqrt {b^2-4 a c}} \]

[In]

Int[(d + e*x)^2/(a + b*x^2 + c*x^4),x]

[Out]

((e^2 + (2*c*d^2 - b*e^2)/Sqrt[b^2 - 4*a*c])*ArcTan[(Sqrt[2]*Sqrt[c]*x)/Sqrt[b - Sqrt[b^2 - 4*a*c]]])/(Sqrt[2]
*Sqrt[c]*Sqrt[b - Sqrt[b^2 - 4*a*c]]) + ((e^2 - (2*c*d^2 - b*e^2)/Sqrt[b^2 - 4*a*c])*ArcTan[(Sqrt[2]*Sqrt[c]*x
)/Sqrt[b + Sqrt[b^2 - 4*a*c]]])/(Sqrt[2]*Sqrt[c]*Sqrt[b + Sqrt[b^2 - 4*a*c]]) - (2*d*e*ArcTanh[(b + 2*c*x^2)/S
qrt[b^2 - 4*a*c]])/Sqrt[b^2 - 4*a*c]

Rule 12

Int[(a_)*(u_), x_Symbol] :> Dist[a, Int[u, x], x] /; FreeQ[a, x] &&  !MatchQ[u, (b_)*(v_) /; FreeQ[b, x]]

Rule 211

Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> Simp[(Rt[a/b, 2]/a)*ArcTan[x/Rt[a/b, 2]], x] /; FreeQ[{a, b}, x]
&& PosQ[a/b]

Rule 212

Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> Simp[(1/(Rt[a, 2]*Rt[-b, 2]))*ArcTanh[Rt[-b, 2]*(x/Rt[a, 2])], x]
 /; FreeQ[{a, b}, x] && NegQ[a/b] && (GtQ[a, 0] || LtQ[b, 0])

Rule 632

Int[((a_.) + (b_.)*(x_) + (c_.)*(x_)^2)^(-1), x_Symbol] :> Dist[-2, Subst[Int[1/Simp[b^2 - 4*a*c - x^2, x], x]
, x, b + 2*c*x], x] /; FreeQ[{a, b, c}, x] && NeQ[b^2 - 4*a*c, 0]

Rule 1121

Int[(x_)*((a_) + (b_.)*(x_)^2 + (c_.)*(x_)^4)^(p_.), x_Symbol] :> Dist[1/2, Subst[Int[(a + b*x + c*x^2)^p, x],
 x, x^2], x] /; FreeQ[{a, b, c, p}, x]

Rule 1180

Int[((d_) + (e_.)*(x_)^2)/((a_) + (b_.)*(x_)^2 + (c_.)*(x_)^4), x_Symbol] :> With[{q = Rt[b^2 - 4*a*c, 2]}, Di
st[e/2 + (2*c*d - b*e)/(2*q), Int[1/(b/2 - q/2 + c*x^2), x], x] + Dist[e/2 - (2*c*d - b*e)/(2*q), Int[1/(b/2 +
 q/2 + c*x^2), x], x]] /; FreeQ[{a, b, c, d, e}, x] && NeQ[b^2 - 4*a*c, 0] && NeQ[c*d^2 - a*e^2, 0] && PosQ[b^
2 - 4*a*c]

Rule 1687

Int[(Pq_)*((a_) + (b_.)*(x_)^2 + (c_.)*(x_)^4)^(p_), x_Symbol] :> Module[{q = Expon[Pq, x], k}, Int[Sum[Coeff[
Pq, x, 2*k]*x^(2*k), {k, 0, q/2}]*(a + b*x^2 + c*x^4)^p, x] + Int[x*Sum[Coeff[Pq, x, 2*k + 1]*x^(2*k), {k, 0,
(q - 1)/2}]*(a + b*x^2 + c*x^4)^p, x]] /; FreeQ[{a, b, c, p}, x] && PolyQ[Pq, x] &&  !PolyQ[Pq, x^2]

Rubi steps \begin{align*} \text {integral}& = \int \frac {2 d e x}{a+b x^2+c x^4} \, dx+\int \frac {d^2+e^2 x^2}{a+b x^2+c x^4} \, dx \\ & = (2 d e) \int \frac {x}{a+b x^2+c x^4} \, dx+\frac {1}{2} \left (e^2-\frac {2 c d^2-b e^2}{\sqrt {b^2-4 a c}}\right ) \int \frac {1}{\frac {b}{2}+\frac {1}{2} \sqrt {b^2-4 a c}+c x^2} \, dx+\frac {1}{2} \left (e^2+\frac {2 c d^2-b e^2}{\sqrt {b^2-4 a c}}\right ) \int \frac {1}{\frac {b}{2}-\frac {1}{2} \sqrt {b^2-4 a c}+c x^2} \, dx \\ & = \frac {\left (e^2+\frac {2 c d^2-b e^2}{\sqrt {b^2-4 a c}}\right ) \tan ^{-1}\left (\frac {\sqrt {2} \sqrt {c} x}{\sqrt {b-\sqrt {b^2-4 a c}}}\right )}{\sqrt {2} \sqrt {c} \sqrt {b-\sqrt {b^2-4 a c}}}+\frac {\left (e^2-\frac {2 c d^2-b e^2}{\sqrt {b^2-4 a c}}\right ) \tan ^{-1}\left (\frac {\sqrt {2} \sqrt {c} x}{\sqrt {b+\sqrt {b^2-4 a c}}}\right )}{\sqrt {2} \sqrt {c} \sqrt {b+\sqrt {b^2-4 a c}}}+(d e) \text {Subst}\left (\int \frac {1}{a+b x+c x^2} \, dx,x,x^2\right ) \\ & = \frac {\left (e^2+\frac {2 c d^2-b e^2}{\sqrt {b^2-4 a c}}\right ) \tan ^{-1}\left (\frac {\sqrt {2} \sqrt {c} x}{\sqrt {b-\sqrt {b^2-4 a c}}}\right )}{\sqrt {2} \sqrt {c} \sqrt {b-\sqrt {b^2-4 a c}}}+\frac {\left (e^2-\frac {2 c d^2-b e^2}{\sqrt {b^2-4 a c}}\right ) \tan ^{-1}\left (\frac {\sqrt {2} \sqrt {c} x}{\sqrt {b+\sqrt {b^2-4 a c}}}\right )}{\sqrt {2} \sqrt {c} \sqrt {b+\sqrt {b^2-4 a c}}}-(2 d e) \text {Subst}\left (\int \frac {1}{b^2-4 a c-x^2} \, dx,x,b+2 c x^2\right ) \\ & = \frac {\left (e^2+\frac {2 c d^2-b e^2}{\sqrt {b^2-4 a c}}\right ) \tan ^{-1}\left (\frac {\sqrt {2} \sqrt {c} x}{\sqrt {b-\sqrt {b^2-4 a c}}}\right )}{\sqrt {2} \sqrt {c} \sqrt {b-\sqrt {b^2-4 a c}}}+\frac {\left (e^2-\frac {2 c d^2-b e^2}{\sqrt {b^2-4 a c}}\right ) \tan ^{-1}\left (\frac {\sqrt {2} \sqrt {c} x}{\sqrt {b+\sqrt {b^2-4 a c}}}\right )}{\sqrt {2} \sqrt {c} \sqrt {b+\sqrt {b^2-4 a c}}}-\frac {2 d e \tanh ^{-1}\left (\frac {b+2 c x^2}{\sqrt {b^2-4 a c}}\right )}{\sqrt {b^2-4 a c}} \\ \end{align*}

Mathematica [A] (verified)

Time = 0.16 (sec) , antiderivative size = 245, normalized size of antiderivative = 1.09 \[ \int \frac {(d+e x)^2}{a+b x^2+c x^4} \, dx=\frac {\frac {\sqrt {2} \left (2 c d^2+\left (-b+\sqrt {b^2-4 a c}\right ) e^2\right ) \arctan \left (\frac {\sqrt {2} \sqrt {c} x}{\sqrt {b-\sqrt {b^2-4 a c}}}\right )}{\sqrt {c} \sqrt {b-\sqrt {b^2-4 a c}}}+\frac {\sqrt {2} \left (-2 c d^2+\left (b+\sqrt {b^2-4 a c}\right ) e^2\right ) \arctan \left (\frac {\sqrt {2} \sqrt {c} x}{\sqrt {b+\sqrt {b^2-4 a c}}}\right )}{\sqrt {c} \sqrt {b+\sqrt {b^2-4 a c}}}+2 d e \log \left (-b+\sqrt {b^2-4 a c}-2 c x^2\right )-2 d e \log \left (b+\sqrt {b^2-4 a c}+2 c x^2\right )}{2 \sqrt {b^2-4 a c}} \]

[In]

Integrate[(d + e*x)^2/(a + b*x^2 + c*x^4),x]

[Out]

((Sqrt[2]*(2*c*d^2 + (-b + Sqrt[b^2 - 4*a*c])*e^2)*ArcTan[(Sqrt[2]*Sqrt[c]*x)/Sqrt[b - Sqrt[b^2 - 4*a*c]]])/(S
qrt[c]*Sqrt[b - Sqrt[b^2 - 4*a*c]]) + (Sqrt[2]*(-2*c*d^2 + (b + Sqrt[b^2 - 4*a*c])*e^2)*ArcTan[(Sqrt[2]*Sqrt[c
]*x)/Sqrt[b + Sqrt[b^2 - 4*a*c]]])/(Sqrt[c]*Sqrt[b + Sqrt[b^2 - 4*a*c]]) + 2*d*e*Log[-b + Sqrt[b^2 - 4*a*c] -
2*c*x^2] - 2*d*e*Log[b + Sqrt[b^2 - 4*a*c] + 2*c*x^2])/(2*Sqrt[b^2 - 4*a*c])

Maple [C] (verified)

Result contains higher order function than in optimal. Order 9 vs. order 3.

Time = 0.72 (sec) , antiderivative size = 54, normalized size of antiderivative = 0.24

method result size
risch \(\frac {\left (\munderset {\textit {\_R} =\operatorname {RootOf}\left (c \,\textit {\_Z}^{4}+\textit {\_Z}^{2} b +a \right )}{\sum }\frac {\left (\textit {\_R}^{2} e^{2}+2 \textit {\_R} d e +d^{2}\right ) \ln \left (x -\textit {\_R} \right )}{2 c \,\textit {\_R}^{3}+b \textit {\_R}}\right )}{2}\) \(54\)
default \(4 c \left (-\frac {\sqrt {-4 a c +b^{2}}\, \left (-d e \ln \left (2 c \,x^{2}+\sqrt {-4 a c +b^{2}}+b \right )+\frac {\left (e^{2} \sqrt {-4 a c +b^{2}}+b \,e^{2}-2 c \,d^{2}\right ) \sqrt {2}\, \arctan \left (\frac {c x \sqrt {2}}{\sqrt {\left (b +\sqrt {-4 a c +b^{2}}\right ) c}}\right )}{2 \sqrt {\left (b +\sqrt {-4 a c +b^{2}}\right ) c}}\right )}{4 \left (4 a c -b^{2}\right ) c}-\frac {\sqrt {-4 a c +b^{2}}\, \left (d e \ln \left (-2 c \,x^{2}+\sqrt {-4 a c +b^{2}}-b \right )+\frac {\left (-e^{2} \sqrt {-4 a c +b^{2}}+b \,e^{2}-2 c \,d^{2}\right ) \sqrt {2}\, \operatorname {arctanh}\left (\frac {c x \sqrt {2}}{\sqrt {\left (-b +\sqrt {-4 a c +b^{2}}\right ) c}}\right )}{2 \sqrt {\left (-b +\sqrt {-4 a c +b^{2}}\right ) c}}\right )}{4 \left (4 a c -b^{2}\right ) c}\right )\) \(253\)

[In]

int((e*x+d)^2/(c*x^4+b*x^2+a),x,method=_RETURNVERBOSE)

[Out]

1/2*sum((_R^2*e^2+2*_R*d*e+d^2)/(2*_R^3*c+_R*b)*ln(x-_R),_R=RootOf(_Z^4*c+_Z^2*b+a))

Fricas [C] (verification not implemented)

Result contains complex when optimal does not.

Time = 80.46 (sec) , antiderivative size = 540080, normalized size of antiderivative = 2411.07 \[ \int \frac {(d+e x)^2}{a+b x^2+c x^4} \, dx=\text {Too large to display} \]

[In]

integrate((e*x+d)^2/(c*x^4+b*x^2+a),x, algorithm="fricas")

[Out]

Too large to include

Sympy [F(-1)]

Timed out. \[ \int \frac {(d+e x)^2}{a+b x^2+c x^4} \, dx=\text {Timed out} \]

[In]

integrate((e*x+d)**2/(c*x**4+b*x**2+a),x)

[Out]

Timed out

Maxima [F]

\[ \int \frac {(d+e x)^2}{a+b x^2+c x^4} \, dx=\int { \frac {{\left (e x + d\right )}^{2}}{c x^{4} + b x^{2} + a} \,d x } \]

[In]

integrate((e*x+d)^2/(c*x^4+b*x^2+a),x, algorithm="maxima")

[Out]

integrate((e*x + d)^2/(c*x^4 + b*x^2 + a), x)

Giac [B] (verification not implemented)

Leaf count of result is larger than twice the leaf count of optimal. 1724 vs. \(2 (186) = 372\).

Time = 1.19 (sec) , antiderivative size = 1724, normalized size of antiderivative = 7.70 \[ \int \frac {(d+e x)^2}{a+b x^2+c x^4} \, dx=\text {Too large to display} \]

[In]

integrate((e*x+d)^2/(c*x^4+b*x^2+a),x, algorithm="giac")

[Out]

-(b^2*c^2 - 4*a*c^3 - 2*b*c^3 + c^4)*sqrt(b^2 - 4*a*c)*d*e*log(x^2 + 1/2*(b - sqrt(b^2 - 4*a*c))/c)/((b^4 - 8*
a*b^2*c - 2*b^3*c + 16*a^2*c^2 + 8*a*b*c^2 + b^2*c^2 - 4*a*c^3)*c^2) + 1/2*(b^5*c - 8*a*b^3*c^2 - 2*b^4*c^2 +
16*a^2*b*c^3 + 8*a*b^2*c^3 + b^3*c^3 - 4*a*b*c^4 + (b^4*c - 6*a*b^2*c^2 - 2*b^3*c^2 + 8*a^2*c^3 + 4*a*b*c^3 +
b^2*c^3 - 2*a*c^4)*sqrt(b^2 - 4*a*c))*d*e*log(x^2 + 1/2*(b + sqrt(b^2 - 4*a*c))/c)/((a*b^4 - 8*a^2*b^2*c - 2*a
*b^3*c + 16*a^3*c^2 + 8*a^2*b*c^2 + a*b^2*c^2 - 4*a^2*c^3)*c^2) + 1/4*((sqrt(2)*sqrt(b*c + sqrt(b^2 - 4*a*c)*c
)*b^4 - 8*sqrt(2)*sqrt(b*c + sqrt(b^2 - 4*a*c)*c)*a*b^2*c - 2*sqrt(2)*sqrt(b*c + sqrt(b^2 - 4*a*c)*c)*b^3*c -
2*b^4*c + 16*sqrt(2)*sqrt(b*c + sqrt(b^2 - 4*a*c)*c)*a^2*c^2 + 8*sqrt(2)*sqrt(b*c + sqrt(b^2 - 4*a*c)*c)*a*b*c
^2 + sqrt(2)*sqrt(b*c + sqrt(b^2 - 4*a*c)*c)*b^2*c^2 + 16*a*b^2*c^2 + 2*b^3*c^2 - 4*sqrt(2)*sqrt(b*c + sqrt(b^
2 - 4*a*c)*c)*a*c^3 - 32*a^2*c^3 - 8*a*b*c^3 - sqrt(2)*sqrt(b^2 - 4*a*c)*sqrt(b*c + sqrt(b^2 - 4*a*c)*c)*b^3 +
 4*sqrt(2)*sqrt(b^2 - 4*a*c)*sqrt(b*c + sqrt(b^2 - 4*a*c)*c)*a*b*c + 2*sqrt(2)*sqrt(b^2 - 4*a*c)*sqrt(b*c + sq
rt(b^2 - 4*a*c)*c)*b^2*c - sqrt(2)*sqrt(b^2 - 4*a*c)*sqrt(b*c + sqrt(b^2 - 4*a*c)*c)*b*c^2 + 2*(b^2 - 4*a*c)*b
^2*c - 8*(b^2 - 4*a*c)*a*c^2 - 2*(b^2 - 4*a*c)*b*c^2)*d^2 - 2*(2*a*b^2*c^2 - 8*a^2*c^3 - sqrt(2)*sqrt(b^2 - 4*
a*c)*sqrt(b*c + sqrt(b^2 - 4*a*c)*c)*a*b^2 + 4*sqrt(2)*sqrt(b^2 - 4*a*c)*sqrt(b*c + sqrt(b^2 - 4*a*c)*c)*a^2*c
 + 2*sqrt(2)*sqrt(b^2 - 4*a*c)*sqrt(b*c + sqrt(b^2 - 4*a*c)*c)*a*b*c - sqrt(2)*sqrt(b^2 - 4*a*c)*sqrt(b*c + sq
rt(b^2 - 4*a*c)*c)*a*c^2 - 2*(b^2 - 4*a*c)*a*c^2)*e^2)*arctan(2*sqrt(1/2)*x/sqrt((b + sqrt(b^2 - 4*a*c))/c))/(
(a*b^4 - 8*a^2*b^2*c - 2*a*b^3*c + 16*a^3*c^2 + 8*a^2*b*c^2 + a*b^2*c^2 - 4*a^2*c^3)*abs(c)) + 1/4*((sqrt(2)*s
qrt(b*c - sqrt(b^2 - 4*a*c)*c)*b^4 - 8*sqrt(2)*sqrt(b*c - sqrt(b^2 - 4*a*c)*c)*a*b^2*c - 2*sqrt(2)*sqrt(b*c -
sqrt(b^2 - 4*a*c)*c)*b^3*c + 2*b^4*c + 16*sqrt(2)*sqrt(b*c - sqrt(b^2 - 4*a*c)*c)*a^2*c^2 + 8*sqrt(2)*sqrt(b*c
 - sqrt(b^2 - 4*a*c)*c)*a*b*c^2 + sqrt(2)*sqrt(b*c - sqrt(b^2 - 4*a*c)*c)*b^2*c^2 - 16*a*b^2*c^2 + 2*b^3*c^2 -
 4*sqrt(2)*sqrt(b*c - sqrt(b^2 - 4*a*c)*c)*a*c^3 + 32*a^2*c^3 - 8*a*b*c^3 - sqrt(2)*sqrt(b^2 - 4*a*c)*sqrt(b*c
 - sqrt(b^2 - 4*a*c)*c)*b^3 + 4*sqrt(2)*sqrt(b^2 - 4*a*c)*sqrt(b*c - sqrt(b^2 - 4*a*c)*c)*a*b*c + 2*sqrt(2)*sq
rt(b^2 - 4*a*c)*sqrt(b*c - sqrt(b^2 - 4*a*c)*c)*b^2*c - sqrt(2)*sqrt(b^2 - 4*a*c)*sqrt(b*c - sqrt(b^2 - 4*a*c)
*c)*b*c^2 - 2*(b^2 - 4*a*c)*b^2*c + 8*(b^2 - 4*a*c)*a*c^2 - 2*(b^2 - 4*a*c)*b*c^2)*d^2 - 2*(2*a*b^2*c^2 - 8*a^
2*c^3 - sqrt(2)*sqrt(b^2 - 4*a*c)*sqrt(b*c - sqrt(b^2 - 4*a*c)*c)*a*b^2 + 4*sqrt(2)*sqrt(b^2 - 4*a*c)*sqrt(b*c
 - sqrt(b^2 - 4*a*c)*c)*a^2*c + 2*sqrt(2)*sqrt(b^2 - 4*a*c)*sqrt(b*c - sqrt(b^2 - 4*a*c)*c)*a*b*c - sqrt(2)*sq
rt(b^2 - 4*a*c)*sqrt(b*c - sqrt(b^2 - 4*a*c)*c)*a*c^2 - 2*(b^2 - 4*a*c)*a*c^2)*e^2)*arctan(2*sqrt(1/2)*x/sqrt(
(b - sqrt(b^2 - 4*a*c))/c))/((a*b^4 - 8*a^2*b^2*c - 2*a*b^3*c + 16*a^3*c^2 + 8*a^2*b*c^2 + a*b^2*c^2 - 4*a^2*c
^3)*abs(c))

Mupad [B] (verification not implemented)

Time = 0.65 (sec) , antiderivative size = 3046, normalized size of antiderivative = 13.60 \[ \int \frac {(d+e x)^2}{a+b x^2+c x^4} \, dx=\text {Too large to display} \]

[In]

int((d + e*x)^2/(a + b*x^2 + c*x^4),x)

[Out]

symsum(log(3*c^2*d^4*e^2 - a*c*e^6 - 8*root(16*a*b^4*c*z^4 - 128*a^2*b^2*c^2*z^4 + 256*a^3*c^3*z^4 - 48*a*b^2*
c*d^2*e^2*z^2 - 16*a^2*b*c*e^4*z^2 - 16*a*b*c^2*d^4*z^2 + 192*a^2*c^2*d^2*e^2*z^2 + 4*b^3*c*d^4*z^2 + 4*a*b^3*
e^4*z^2 + 8*b^2*c*d^5*e*z + 32*a^2*c*d*e^5*z - 32*a*c^2*d^5*e*z - 8*a*b^2*d*e^5*z + 2*b*c*d^6*e^2 + 2*a*c*d^4*
e^4 + 2*a*b*d^2*e^6 + b^2*d^4*e^4 + c^2*d^8 + a^2*e^8, z, k)^3*b^3*c^2*x + 4*c^2*d^3*e^3*x + 4*root(16*a*b^4*c
*z^4 - 128*a^2*b^2*c^2*z^4 + 256*a^3*c^3*z^4 - 48*a*b^2*c*d^2*e^2*z^2 - 16*a^2*b*c*e^4*z^2 - 16*a*b*c^2*d^4*z^
2 + 192*a^2*c^2*d^2*e^2*z^2 + 4*b^3*c*d^4*z^2 + 4*a*b^3*e^4*z^2 + 8*b^2*c*d^5*e*z + 32*a^2*c*d*e^5*z - 32*a*c^
2*d^5*e*z - 8*a*b^2*d*e^5*z + 2*b*c*d^6*e^2 + 2*a*c*d^4*e^4 + 2*a*b*d^2*e^6 + b^2*d^4*e^4 + c^2*d^8 + a^2*e^8,
 z, k)^2*b^2*c^2*d^2 + b*c*d^2*e^4 - 4*root(16*a*b^4*c*z^4 - 128*a^2*b^2*c^2*z^4 + 256*a^3*c^3*z^4 - 48*a*b^2*
c*d^2*e^2*z^2 - 16*a^2*b*c*e^4*z^2 - 16*a*b*c^2*d^4*z^2 + 192*a^2*c^2*d^2*e^2*z^2 + 4*b^3*c*d^4*z^2 + 4*a*b^3*
e^4*z^2 + 8*b^2*c*d^5*e*z + 32*a^2*c*d*e^5*z - 32*a*c^2*d^5*e*z - 8*a*b^2*d*e^5*z + 2*b*c*d^6*e^2 + 2*a*c*d^4*
e^4 + 2*a*b*d^2*e^6 + b^2*d^4*e^4 + c^2*d^8 + a^2*e^8, z, k)*c^3*d^4*x - 16*root(16*a*b^4*c*z^4 - 128*a^2*b^2*
c^2*z^4 + 256*a^3*c^3*z^4 - 48*a*b^2*c*d^2*e^2*z^2 - 16*a^2*b*c*e^4*z^2 - 16*a*b*c^2*d^4*z^2 + 192*a^2*c^2*d^2
*e^2*z^2 + 4*b^3*c*d^4*z^2 + 4*a*b^3*e^4*z^2 + 8*b^2*c*d^5*e*z + 32*a^2*c*d*e^5*z - 32*a*c^2*d^5*e*z - 8*a*b^2
*d*e^5*z + 2*b*c*d^6*e^2 + 2*a*c*d^4*e^4 + 2*a*b*d^2*e^6 + b^2*d^4*e^4 + c^2*d^8 + a^2*e^8, z, k)^2*a*c^3*d^2
+ 32*root(16*a*b^4*c*z^4 - 128*a^2*b^2*c^2*z^4 + 256*a^3*c^3*z^4 - 48*a*b^2*c*d^2*e^2*z^2 - 16*a^2*b*c*e^4*z^2
 - 16*a*b*c^2*d^4*z^2 + 192*a^2*c^2*d^2*e^2*z^2 + 4*b^3*c*d^4*z^2 + 4*a*b^3*e^4*z^2 + 8*b^2*c*d^5*e*z + 32*a^2
*c*d*e^5*z - 32*a*c^2*d^5*e*z - 8*a*b^2*d*e^5*z + 2*b*c*d^6*e^2 + 2*a*c*d^4*e^4 + 2*a*b*d^2*e^6 + b^2*d^4*e^4
+ c^2*d^8 + a^2*e^8, z, k)^3*a*b*c^3*x + 4*root(16*a*b^4*c*z^4 - 128*a^2*b^2*c^2*z^4 + 256*a^3*c^3*z^4 - 48*a*
b^2*c*d^2*e^2*z^2 - 16*a^2*b*c*e^4*z^2 - 16*a*b*c^2*d^4*z^2 + 192*a^2*c^2*d^2*e^2*z^2 + 4*b^3*c*d^4*z^2 + 4*a*
b^3*e^4*z^2 + 8*b^2*c*d^5*e*z + 32*a^2*c*d*e^5*z - 32*a*c^2*d^5*e*z - 8*a*b^2*d*e^5*z + 2*b*c*d^6*e^2 + 2*a*c*
d^4*e^4 + 2*a*b*d^2*e^6 + b^2*d^4*e^4 + c^2*d^8 + a^2*e^8, z, k)*a*c^2*e^4*x - 2*root(16*a*b^4*c*z^4 - 128*a^2
*b^2*c^2*z^4 + 256*a^3*c^3*z^4 - 48*a*b^2*c*d^2*e^2*z^2 - 16*a^2*b*c*e^4*z^2 - 16*a*b*c^2*d^4*z^2 + 192*a^2*c^
2*d^2*e^2*z^2 + 4*b^3*c*d^4*z^2 + 4*a*b^3*e^4*z^2 + 8*b^2*c*d^5*e*z + 32*a^2*c*d*e^5*z - 32*a*c^2*d^5*e*z - 8*
a*b^2*d*e^5*z + 2*b*c*d^6*e^2 + 2*a*c*d^4*e^4 + 2*a*b*d^2*e^6 + b^2*d^4*e^4 + c^2*d^8 + a^2*e^8, z, k)*b^2*c*e
^4*x + 2*b*c*d*e^5*x - 16*root(16*a*b^4*c*z^4 - 128*a^2*b^2*c^2*z^4 + 256*a^3*c^3*z^4 - 48*a*b^2*c*d^2*e^2*z^2
 - 16*a^2*b*c*e^4*z^2 - 16*a*b*c^2*d^4*z^2 + 192*a^2*c^2*d^2*e^2*z^2 + 4*b^3*c*d^4*z^2 + 4*a*b^3*e^4*z^2 + 8*b
^2*c*d^5*e*z + 32*a^2*c*d*e^5*z - 32*a*c^2*d^5*e*z - 8*a*b^2*d*e^5*z + 2*b*c*d^6*e^2 + 2*a*c*d^4*e^4 + 2*a*b*d
^2*e^6 + b^2*d^4*e^4 + c^2*d^8 + a^2*e^8, z, k)*a*c^2*d*e^3 + 8*root(16*a*b^4*c*z^4 - 128*a^2*b^2*c^2*z^4 + 25
6*a^3*c^3*z^4 - 48*a*b^2*c*d^2*e^2*z^2 - 16*a^2*b*c*e^4*z^2 - 16*a*b*c^2*d^4*z^2 + 192*a^2*c^2*d^2*e^2*z^2 + 4
*b^3*c*d^4*z^2 + 4*a*b^3*e^4*z^2 + 8*b^2*c*d^5*e*z + 32*a^2*c*d*e^5*z - 32*a*c^2*d^5*e*z - 8*a*b^2*d*e^5*z + 2
*b*c*d^6*e^2 + 2*a*c*d^4*e^4 + 2*a*b*d^2*e^6 + b^2*d^4*e^4 + c^2*d^8 + a^2*e^8, z, k)*b*c^2*d^3*e + 32*root(16
*a*b^4*c*z^4 - 128*a^2*b^2*c^2*z^4 + 256*a^3*c^3*z^4 - 48*a*b^2*c*d^2*e^2*z^2 - 16*a^2*b*c*e^4*z^2 - 16*a*b*c^
2*d^4*z^2 + 192*a^2*c^2*d^2*e^2*z^2 + 4*b^3*c*d^4*z^2 + 4*a*b^3*e^4*z^2 + 8*b^2*c*d^5*e*z + 32*a^2*c*d*e^5*z -
 32*a*c^2*d^5*e*z - 8*a*b^2*d*e^5*z + 2*b*c*d^6*e^2 + 2*a*c*d^4*e^4 + 2*a*b*d^2*e^6 + b^2*d^4*e^4 + c^2*d^8 +
a^2*e^8, z, k)^2*a*c^3*d*e*x + 12*root(16*a*b^4*c*z^4 - 128*a^2*b^2*c^2*z^4 + 256*a^3*c^3*z^4 - 48*a*b^2*c*d^2
*e^2*z^2 - 16*a^2*b*c*e^4*z^2 - 16*a*b*c^2*d^4*z^2 + 192*a^2*c^2*d^2*e^2*z^2 + 4*b^3*c*d^4*z^2 + 4*a*b^3*e^4*z
^2 + 8*b^2*c*d^5*e*z + 32*a^2*c*d*e^5*z - 32*a*c^2*d^5*e*z - 8*a*b^2*d*e^5*z + 2*b*c*d^6*e^2 + 2*a*c*d^4*e^4 +
 2*a*b*d^2*e^6 + b^2*d^4*e^4 + c^2*d^8 + a^2*e^8, z, k)*b*c^2*d^2*e^2*x - 8*root(16*a*b^4*c*z^4 - 128*a^2*b^2*
c^2*z^4 + 256*a^3*c^3*z^4 - 48*a*b^2*c*d^2*e^2*z^2 - 16*a^2*b*c*e^4*z^2 - 16*a*b*c^2*d^4*z^2 + 192*a^2*c^2*d^2
*e^2*z^2 + 4*b^3*c*d^4*z^2 + 4*a*b^3*e^4*z^2 + 8*b^2*c*d^5*e*z + 32*a^2*c*d*e^5*z - 32*a*c^2*d^5*e*z - 8*a*b^2
*d*e^5*z + 2*b*c*d^6*e^2 + 2*a*c*d^4*e^4 + 2*a*b*d^2*e^6 + b^2*d^4*e^4 + c^2*d^8 + a^2*e^8, z, k)^2*b^2*c^2*d*
e*x)*root(16*a*b^4*c*z^4 - 128*a^2*b^2*c^2*z^4 + 256*a^3*c^3*z^4 - 48*a*b^2*c*d^2*e^2*z^2 - 16*a^2*b*c*e^4*z^2
 - 16*a*b*c^2*d^4*z^2 + 192*a^2*c^2*d^2*e^2*z^2 + 4*b^3*c*d^4*z^2 + 4*a*b^3*e^4*z^2 + 8*b^2*c*d^5*e*z + 32*a^2
*c*d*e^5*z - 32*a*c^2*d^5*e*z - 8*a*b^2*d*e^5*z + 2*b*c*d^6*e^2 + 2*a*c*d^4*e^4 + 2*a*b*d^2*e^6 + b^2*d^4*e^4
+ c^2*d^8 + a^2*e^8, z, k), k, 1, 4)