\(\int \frac {(d+e x)^2}{a+c x^4} \, dx\) [395]

   Optimal result
   Rubi [A] (verified)
   Mathematica [A] (verified)
   Maple [C] (verified)
   Fricas [C] (verification not implemented)
   Sympy [A] (verification not implemented)
   Maxima [A] (verification not implemented)
   Giac [A] (verification not implemented)
   Mupad [B] (verification not implemented)

Optimal result

Integrand size = 17, antiderivative size = 291 \[ \int \frac {(d+e x)^2}{a+c x^4} \, dx=\frac {d e \arctan \left (\frac {\sqrt {c} x^2}{\sqrt {a}}\right )}{\sqrt {a} \sqrt {c}}-\frac {\left (\sqrt {c} d^2+\sqrt {a} e^2\right ) \arctan \left (1-\frac {\sqrt {2} \sqrt [4]{c} x}{\sqrt [4]{a}}\right )}{2 \sqrt {2} a^{3/4} c^{3/4}}+\frac {\left (\sqrt {c} d^2+\sqrt {a} e^2\right ) \arctan \left (1+\frac {\sqrt {2} \sqrt [4]{c} x}{\sqrt [4]{a}}\right )}{2 \sqrt {2} a^{3/4} c^{3/4}}-\frac {\left (\sqrt {c} d^2-\sqrt {a} e^2\right ) \log \left (\sqrt {a}-\sqrt {2} \sqrt [4]{a} \sqrt [4]{c} x+\sqrt {c} x^2\right )}{4 \sqrt {2} a^{3/4} c^{3/4}}+\frac {\left (\sqrt {c} d^2-\sqrt {a} e^2\right ) \log \left (\sqrt {a}+\sqrt {2} \sqrt [4]{a} \sqrt [4]{c} x+\sqrt {c} x^2\right )}{4 \sqrt {2} a^{3/4} c^{3/4}} \]

[Out]

d*e*arctan(x^2*c^(1/2)/a^(1/2))/a^(1/2)/c^(1/2)-1/8*ln(-a^(1/4)*c^(1/4)*x*2^(1/2)+a^(1/2)+x^2*c^(1/2))*(-e^2*a
^(1/2)+d^2*c^(1/2))/a^(3/4)/c^(3/4)*2^(1/2)+1/8*ln(a^(1/4)*c^(1/4)*x*2^(1/2)+a^(1/2)+x^2*c^(1/2))*(-e^2*a^(1/2
)+d^2*c^(1/2))/a^(3/4)/c^(3/4)*2^(1/2)+1/4*arctan(-1+c^(1/4)*x*2^(1/2)/a^(1/4))*(e^2*a^(1/2)+d^2*c^(1/2))/a^(3
/4)/c^(3/4)*2^(1/2)+1/4*arctan(1+c^(1/4)*x*2^(1/2)/a^(1/4))*(e^2*a^(1/2)+d^2*c^(1/2))/a^(3/4)/c^(3/4)*2^(1/2)

Rubi [A] (verified)

Time = 0.14 (sec) , antiderivative size = 291, normalized size of antiderivative = 1.00, number of steps used = 13, number of rules used = 9, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.529, Rules used = {1890, 281, 211, 1182, 1176, 631, 210, 1179, 642} \[ \int \frac {(d+e x)^2}{a+c x^4} \, dx=-\frac {\arctan \left (1-\frac {\sqrt {2} \sqrt [4]{c} x}{\sqrt [4]{a}}\right ) \left (\sqrt {a} e^2+\sqrt {c} d^2\right )}{2 \sqrt {2} a^{3/4} c^{3/4}}+\frac {\arctan \left (\frac {\sqrt {2} \sqrt [4]{c} x}{\sqrt [4]{a}}+1\right ) \left (\sqrt {a} e^2+\sqrt {c} d^2\right )}{2 \sqrt {2} a^{3/4} c^{3/4}}-\frac {\left (\sqrt {c} d^2-\sqrt {a} e^2\right ) \log \left (-\sqrt {2} \sqrt [4]{a} \sqrt [4]{c} x+\sqrt {a}+\sqrt {c} x^2\right )}{4 \sqrt {2} a^{3/4} c^{3/4}}+\frac {\left (\sqrt {c} d^2-\sqrt {a} e^2\right ) \log \left (\sqrt {2} \sqrt [4]{a} \sqrt [4]{c} x+\sqrt {a}+\sqrt {c} x^2\right )}{4 \sqrt {2} a^{3/4} c^{3/4}}+\frac {d e \arctan \left (\frac {\sqrt {c} x^2}{\sqrt {a}}\right )}{\sqrt {a} \sqrt {c}} \]

[In]

Int[(d + e*x)^2/(a + c*x^4),x]

[Out]

(d*e*ArcTan[(Sqrt[c]*x^2)/Sqrt[a]])/(Sqrt[a]*Sqrt[c]) - ((Sqrt[c]*d^2 + Sqrt[a]*e^2)*ArcTan[1 - (Sqrt[2]*c^(1/
4)*x)/a^(1/4)])/(2*Sqrt[2]*a^(3/4)*c^(3/4)) + ((Sqrt[c]*d^2 + Sqrt[a]*e^2)*ArcTan[1 + (Sqrt[2]*c^(1/4)*x)/a^(1
/4)])/(2*Sqrt[2]*a^(3/4)*c^(3/4)) - ((Sqrt[c]*d^2 - Sqrt[a]*e^2)*Log[Sqrt[a] - Sqrt[2]*a^(1/4)*c^(1/4)*x + Sqr
t[c]*x^2])/(4*Sqrt[2]*a^(3/4)*c^(3/4)) + ((Sqrt[c]*d^2 - Sqrt[a]*e^2)*Log[Sqrt[a] + Sqrt[2]*a^(1/4)*c^(1/4)*x
+ Sqrt[c]*x^2])/(4*Sqrt[2]*a^(3/4)*c^(3/4))

Rule 210

Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> Simp[(-(Rt[-a, 2]*Rt[-b, 2])^(-1))*ArcTan[Rt[-b, 2]*(x/Rt[-a, 2])
], x] /; FreeQ[{a, b}, x] && PosQ[a/b] && (LtQ[a, 0] || LtQ[b, 0])

Rule 211

Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> Simp[(Rt[a/b, 2]/a)*ArcTan[x/Rt[a/b, 2]], x] /; FreeQ[{a, b}, x]
&& PosQ[a/b]

Rule 281

Int[(x_)^(m_.)*((a_) + (b_.)*(x_)^(n_))^(p_), x_Symbol] :> With[{k = GCD[m + 1, n]}, Dist[1/k, Subst[Int[x^((m
 + 1)/k - 1)*(a + b*x^(n/k))^p, x], x, x^k], x] /; k != 1] /; FreeQ[{a, b, p}, x] && IGtQ[n, 0] && IntegerQ[m]

Rule 631

Int[((a_) + (b_.)*(x_) + (c_.)*(x_)^2)^(-1), x_Symbol] :> With[{q = 1 - 4*Simplify[a*(c/b^2)]}, Dist[-2/b, Sub
st[Int[1/(q - x^2), x], x, 1 + 2*c*(x/b)], x] /; RationalQ[q] && (EqQ[q^2, 1] ||  !RationalQ[b^2 - 4*a*c])] /;
 FreeQ[{a, b, c}, x] && NeQ[b^2 - 4*a*c, 0]

Rule 642

Int[((d_) + (e_.)*(x_))/((a_.) + (b_.)*(x_) + (c_.)*(x_)^2), x_Symbol] :> Simp[d*(Log[RemoveContent[a + b*x +
c*x^2, x]]/b), x] /; FreeQ[{a, b, c, d, e}, x] && EqQ[2*c*d - b*e, 0]

Rule 1176

Int[((d_) + (e_.)*(x_)^2)/((a_) + (c_.)*(x_)^4), x_Symbol] :> With[{q = Rt[2*(d/e), 2]}, Dist[e/(2*c), Int[1/S
imp[d/e + q*x + x^2, x], x], x] + Dist[e/(2*c), Int[1/Simp[d/e - q*x + x^2, x], x], x]] /; FreeQ[{a, c, d, e},
 x] && EqQ[c*d^2 - a*e^2, 0] && PosQ[d*e]

Rule 1179

Int[((d_) + (e_.)*(x_)^2)/((a_) + (c_.)*(x_)^4), x_Symbol] :> With[{q = Rt[-2*(d/e), 2]}, Dist[e/(2*c*q), Int[
(q - 2*x)/Simp[d/e + q*x - x^2, x], x], x] + Dist[e/(2*c*q), Int[(q + 2*x)/Simp[d/e - q*x - x^2, x], x], x]] /
; FreeQ[{a, c, d, e}, x] && EqQ[c*d^2 - a*e^2, 0] && NegQ[d*e]

Rule 1182

Int[((d_) + (e_.)*(x_)^2)/((a_) + (c_.)*(x_)^4), x_Symbol] :> With[{q = Rt[a*c, 2]}, Dist[(d*q + a*e)/(2*a*c),
 Int[(q + c*x^2)/(a + c*x^4), x], x] + Dist[(d*q - a*e)/(2*a*c), Int[(q - c*x^2)/(a + c*x^4), x], x]] /; FreeQ
[{a, c, d, e}, x] && NeQ[c*d^2 + a*e^2, 0] && NeQ[c*d^2 - a*e^2, 0] && NegQ[(-a)*c]

Rule 1890

Int[(Pq_)/((a_) + (b_.)*(x_)^(n_)), x_Symbol] :> With[{v = Sum[x^ii*((Coeff[Pq, x, ii] + Coeff[Pq, x, n/2 + ii
]*x^(n/2))/(a + b*x^n)), {ii, 0, n/2 - 1}]}, Int[v, x] /; SumQ[v]] /; FreeQ[{a, b}, x] && PolyQ[Pq, x] && IGtQ
[n/2, 0] && Expon[Pq, x] < n

Rubi steps \begin{align*} \text {integral}& = \int \left (\frac {2 d e x}{a+c x^4}+\frac {d^2+e^2 x^2}{a+c x^4}\right ) \, dx \\ & = (2 d e) \int \frac {x}{a+c x^4} \, dx+\int \frac {d^2+e^2 x^2}{a+c x^4} \, dx \\ & = (d e) \text {Subst}\left (\int \frac {1}{a+c x^2} \, dx,x,x^2\right )+\frac {\left (\frac {\sqrt {c} d^2}{\sqrt {a}}-e^2\right ) \int \frac {\sqrt {a} \sqrt {c}-c x^2}{a+c x^4} \, dx}{2 c}+\frac {\left (\frac {\sqrt {c} d^2}{\sqrt {a}}+e^2\right ) \int \frac {\sqrt {a} \sqrt {c}+c x^2}{a+c x^4} \, dx}{2 c} \\ & = \frac {d e \tan ^{-1}\left (\frac {\sqrt {c} x^2}{\sqrt {a}}\right )}{\sqrt {a} \sqrt {c}}+\frac {\left (\frac {\sqrt {c} d^2}{\sqrt {a}}+e^2\right ) \int \frac {1}{\frac {\sqrt {a}}{\sqrt {c}}-\frac {\sqrt {2} \sqrt [4]{a} x}{\sqrt [4]{c}}+x^2} \, dx}{4 c}+\frac {\left (\frac {\sqrt {c} d^2}{\sqrt {a}}+e^2\right ) \int \frac {1}{\frac {\sqrt {a}}{\sqrt {c}}+\frac {\sqrt {2} \sqrt [4]{a} x}{\sqrt [4]{c}}+x^2} \, dx}{4 c}-\frac {\left (\sqrt {c} d^2-\sqrt {a} e^2\right ) \int \frac {\frac {\sqrt {2} \sqrt [4]{a}}{\sqrt [4]{c}}+2 x}{-\frac {\sqrt {a}}{\sqrt {c}}-\frac {\sqrt {2} \sqrt [4]{a} x}{\sqrt [4]{c}}-x^2} \, dx}{4 \sqrt {2} a^{3/4} c^{3/4}}-\frac {\left (\sqrt {c} d^2-\sqrt {a} e^2\right ) \int \frac {\frac {\sqrt {2} \sqrt [4]{a}}{\sqrt [4]{c}}-2 x}{-\frac {\sqrt {a}}{\sqrt {c}}+\frac {\sqrt {2} \sqrt [4]{a} x}{\sqrt [4]{c}}-x^2} \, dx}{4 \sqrt {2} a^{3/4} c^{3/4}} \\ & = \frac {d e \tan ^{-1}\left (\frac {\sqrt {c} x^2}{\sqrt {a}}\right )}{\sqrt {a} \sqrt {c}}-\frac {\left (\sqrt {c} d^2-\sqrt {a} e^2\right ) \log \left (\sqrt {a}-\sqrt {2} \sqrt [4]{a} \sqrt [4]{c} x+\sqrt {c} x^2\right )}{4 \sqrt {2} a^{3/4} c^{3/4}}+\frac {\left (\sqrt {c} d^2-\sqrt {a} e^2\right ) \log \left (\sqrt {a}+\sqrt {2} \sqrt [4]{a} \sqrt [4]{c} x+\sqrt {c} x^2\right )}{4 \sqrt {2} a^{3/4} c^{3/4}}+\frac {\left (\sqrt {c} d^2+\sqrt {a} e^2\right ) \text {Subst}\left (\int \frac {1}{-1-x^2} \, dx,x,1-\frac {\sqrt {2} \sqrt [4]{c} x}{\sqrt [4]{a}}\right )}{2 \sqrt {2} a^{3/4} c^{3/4}}-\frac {\left (\sqrt {c} d^2+\sqrt {a} e^2\right ) \text {Subst}\left (\int \frac {1}{-1-x^2} \, dx,x,1+\frac {\sqrt {2} \sqrt [4]{c} x}{\sqrt [4]{a}}\right )}{2 \sqrt {2} a^{3/4} c^{3/4}} \\ & = \frac {d e \tan ^{-1}\left (\frac {\sqrt {c} x^2}{\sqrt {a}}\right )}{\sqrt {a} \sqrt {c}}-\frac {\left (\sqrt {c} d^2+\sqrt {a} e^2\right ) \tan ^{-1}\left (1-\frac {\sqrt {2} \sqrt [4]{c} x}{\sqrt [4]{a}}\right )}{2 \sqrt {2} a^{3/4} c^{3/4}}+\frac {\left (\sqrt {c} d^2+\sqrt {a} e^2\right ) \tan ^{-1}\left (1+\frac {\sqrt {2} \sqrt [4]{c} x}{\sqrt [4]{a}}\right )}{2 \sqrt {2} a^{3/4} c^{3/4}}-\frac {\left (\sqrt {c} d^2-\sqrt {a} e^2\right ) \log \left (\sqrt {a}-\sqrt {2} \sqrt [4]{a} \sqrt [4]{c} x+\sqrt {c} x^2\right )}{4 \sqrt {2} a^{3/4} c^{3/4}}+\frac {\left (\sqrt {c} d^2-\sqrt {a} e^2\right ) \log \left (\sqrt {a}+\sqrt {2} \sqrt [4]{a} \sqrt [4]{c} x+\sqrt {c} x^2\right )}{4 \sqrt {2} a^{3/4} c^{3/4}} \\ \end{align*}

Mathematica [A] (verified)

Time = 0.07 (sec) , antiderivative size = 243, normalized size of antiderivative = 0.84 \[ \int \frac {(d+e x)^2}{a+c x^4} \, dx=\frac {-2 \left (\sqrt {2} \sqrt {c} d^2+4 \sqrt [4]{a} \sqrt [4]{c} d e+\sqrt {2} \sqrt {a} e^2\right ) \arctan \left (1-\frac {\sqrt {2} \sqrt [4]{c} x}{\sqrt [4]{a}}\right )+2 \left (\sqrt {2} \sqrt {c} d^2-4 \sqrt [4]{a} \sqrt [4]{c} d e+\sqrt {2} \sqrt {a} e^2\right ) \arctan \left (1+\frac {\sqrt {2} \sqrt [4]{c} x}{\sqrt [4]{a}}\right )-\sqrt {2} \left (\sqrt {c} d^2-\sqrt {a} e^2\right ) \left (\log \left (\sqrt {a}-\sqrt {2} \sqrt [4]{a} \sqrt [4]{c} x+\sqrt {c} x^2\right )-\log \left (\sqrt {a}+\sqrt {2} \sqrt [4]{a} \sqrt [4]{c} x+\sqrt {c} x^2\right )\right )}{8 a^{3/4} c^{3/4}} \]

[In]

Integrate[(d + e*x)^2/(a + c*x^4),x]

[Out]

(-2*(Sqrt[2]*Sqrt[c]*d^2 + 4*a^(1/4)*c^(1/4)*d*e + Sqrt[2]*Sqrt[a]*e^2)*ArcTan[1 - (Sqrt[2]*c^(1/4)*x)/a^(1/4)
] + 2*(Sqrt[2]*Sqrt[c]*d^2 - 4*a^(1/4)*c^(1/4)*d*e + Sqrt[2]*Sqrt[a]*e^2)*ArcTan[1 + (Sqrt[2]*c^(1/4)*x)/a^(1/
4)] - Sqrt[2]*(Sqrt[c]*d^2 - Sqrt[a]*e^2)*(Log[Sqrt[a] - Sqrt[2]*a^(1/4)*c^(1/4)*x + Sqrt[c]*x^2] - Log[Sqrt[a
] + Sqrt[2]*a^(1/4)*c^(1/4)*x + Sqrt[c]*x^2]))/(8*a^(3/4)*c^(3/4))

Maple [C] (verified)

Result contains higher order function than in optimal. Order 9 vs. order 3.

Time = 0.81 (sec) , antiderivative size = 43, normalized size of antiderivative = 0.15

method result size
risch \(\frac {\munderset {\textit {\_R} =\operatorname {RootOf}\left (c \,\textit {\_Z}^{4}+a \right )}{\sum }\frac {\left (\textit {\_R}^{2} e^{2}+2 \textit {\_R} d e +d^{2}\right ) \ln \left (x -\textit {\_R} \right )}{\textit {\_R}^{3}}}{4 c}\) \(43\)
default \(\frac {d^{2} \left (\frac {a}{c}\right )^{\frac {1}{4}} \sqrt {2}\, \left (\ln \left (\frac {x^{2}+\left (\frac {a}{c}\right )^{\frac {1}{4}} x \sqrt {2}+\sqrt {\frac {a}{c}}}{x^{2}-\left (\frac {a}{c}\right )^{\frac {1}{4}} x \sqrt {2}+\sqrt {\frac {a}{c}}}\right )+2 \arctan \left (\frac {\sqrt {2}\, x}{\left (\frac {a}{c}\right )^{\frac {1}{4}}}+1\right )+2 \arctan \left (\frac {\sqrt {2}\, x}{\left (\frac {a}{c}\right )^{\frac {1}{4}}}-1\right )\right )}{8 a}+\frac {e d \arctan \left (x^{2} \sqrt {\frac {c}{a}}\right )}{\sqrt {a c}}+\frac {e^{2} \sqrt {2}\, \left (\ln \left (\frac {x^{2}-\left (\frac {a}{c}\right )^{\frac {1}{4}} x \sqrt {2}+\sqrt {\frac {a}{c}}}{x^{2}+\left (\frac {a}{c}\right )^{\frac {1}{4}} x \sqrt {2}+\sqrt {\frac {a}{c}}}\right )+2 \arctan \left (\frac {\sqrt {2}\, x}{\left (\frac {a}{c}\right )^{\frac {1}{4}}}+1\right )+2 \arctan \left (\frac {\sqrt {2}\, x}{\left (\frac {a}{c}\right )^{\frac {1}{4}}}-1\right )\right )}{8 c \left (\frac {a}{c}\right )^{\frac {1}{4}}}\) \(230\)

[In]

int((e*x+d)^2/(c*x^4+a),x,method=_RETURNVERBOSE)

[Out]

1/4/c*sum((_R^2*e^2+2*_R*d*e+d^2)/_R^3*ln(x-_R),_R=RootOf(_Z^4*c+a))

Fricas [C] (verification not implemented)

Result contains complex when optimal does not.

Time = 2.48 (sec) , antiderivative size = 86139, normalized size of antiderivative = 296.01 \[ \int \frac {(d+e x)^2}{a+c x^4} \, dx=\text {Too large to display} \]

[In]

integrate((e*x+d)^2/(c*x^4+a),x, algorithm="fricas")

[Out]

Too large to include

Sympy [A] (verification not implemented)

Time = 1.69 (sec) , antiderivative size = 277, normalized size of antiderivative = 0.95 \[ \int \frac {(d+e x)^2}{a+c x^4} \, dx=\operatorname {RootSum} {\left (256 t^{4} a^{3} c^{3} + 192 t^{2} a^{2} c^{2} d^{2} e^{2} + t \left (32 a^{2} c d e^{5} - 32 a c^{2} d^{5} e\right ) + a^{2} e^{8} + 2 a c d^{4} e^{4} + c^{2} d^{8}, \left ( t \mapsto t \log {\left (x + \frac {64 t^{3} a^{4} c^{2} e^{6} + 448 t^{3} a^{3} c^{3} d^{4} e^{2} - 160 t^{2} a^{3} c^{2} d^{3} e^{5} + 32 t^{2} a^{2} c^{3} d^{7} e + 60 t a^{3} c d^{2} e^{8} + 256 t a^{2} c^{2} d^{6} e^{4} + 4 t a c^{3} d^{10} + 6 a^{3} d e^{11} - 24 a^{2} c d^{5} e^{7} - 30 a c^{2} d^{9} e^{3}}{a^{3} e^{12} - 33 a^{2} c d^{4} e^{8} - 33 a c^{2} d^{8} e^{4} + c^{3} d^{12}} \right )} \right )\right )} \]

[In]

integrate((e*x+d)**2/(c*x**4+a),x)

[Out]

RootSum(256*_t**4*a**3*c**3 + 192*_t**2*a**2*c**2*d**2*e**2 + _t*(32*a**2*c*d*e**5 - 32*a*c**2*d**5*e) + a**2*
e**8 + 2*a*c*d**4*e**4 + c**2*d**8, Lambda(_t, _t*log(x + (64*_t**3*a**4*c**2*e**6 + 448*_t**3*a**3*c**3*d**4*
e**2 - 160*_t**2*a**3*c**2*d**3*e**5 + 32*_t**2*a**2*c**3*d**7*e + 60*_t*a**3*c*d**2*e**8 + 256*_t*a**2*c**2*d
**6*e**4 + 4*_t*a*c**3*d**10 + 6*a**3*d*e**11 - 24*a**2*c*d**5*e**7 - 30*a*c**2*d**9*e**3)/(a**3*e**12 - 33*a*
*2*c*d**4*e**8 - 33*a*c**2*d**8*e**4 + c**3*d**12))))

Maxima [A] (verification not implemented)

none

Time = 0.27 (sec) , antiderivative size = 275, normalized size of antiderivative = 0.95 \[ \int \frac {(d+e x)^2}{a+c x^4} \, dx=\frac {\sqrt {2} {\left (\sqrt {c} d^{2} - \sqrt {a} e^{2}\right )} \log \left (\sqrt {c} x^{2} + \sqrt {2} a^{\frac {1}{4}} c^{\frac {1}{4}} x + \sqrt {a}\right )}{8 \, a^{\frac {3}{4}} c^{\frac {3}{4}}} - \frac {\sqrt {2} {\left (\sqrt {c} d^{2} - \sqrt {a} e^{2}\right )} \log \left (\sqrt {c} x^{2} - \sqrt {2} a^{\frac {1}{4}} c^{\frac {1}{4}} x + \sqrt {a}\right )}{8 \, a^{\frac {3}{4}} c^{\frac {3}{4}}} + \frac {{\left (\sqrt {2} a^{\frac {1}{4}} c^{\frac {3}{4}} d^{2} + \sqrt {2} a^{\frac {3}{4}} c^{\frac {1}{4}} e^{2} - 4 \, \sqrt {a} \sqrt {c} d e\right )} \arctan \left (\frac {\sqrt {2} {\left (2 \, \sqrt {c} x + \sqrt {2} a^{\frac {1}{4}} c^{\frac {1}{4}}\right )}}{2 \, \sqrt {\sqrt {a} \sqrt {c}}}\right )}{4 \, a^{\frac {3}{4}} \sqrt {\sqrt {a} \sqrt {c}} c^{\frac {3}{4}}} + \frac {{\left (\sqrt {2} a^{\frac {1}{4}} c^{\frac {3}{4}} d^{2} + \sqrt {2} a^{\frac {3}{4}} c^{\frac {1}{4}} e^{2} + 4 \, \sqrt {a} \sqrt {c} d e\right )} \arctan \left (\frac {\sqrt {2} {\left (2 \, \sqrt {c} x - \sqrt {2} a^{\frac {1}{4}} c^{\frac {1}{4}}\right )}}{2 \, \sqrt {\sqrt {a} \sqrt {c}}}\right )}{4 \, a^{\frac {3}{4}} \sqrt {\sqrt {a} \sqrt {c}} c^{\frac {3}{4}}} \]

[In]

integrate((e*x+d)^2/(c*x^4+a),x, algorithm="maxima")

[Out]

1/8*sqrt(2)*(sqrt(c)*d^2 - sqrt(a)*e^2)*log(sqrt(c)*x^2 + sqrt(2)*a^(1/4)*c^(1/4)*x + sqrt(a))/(a^(3/4)*c^(3/4
)) - 1/8*sqrt(2)*(sqrt(c)*d^2 - sqrt(a)*e^2)*log(sqrt(c)*x^2 - sqrt(2)*a^(1/4)*c^(1/4)*x + sqrt(a))/(a^(3/4)*c
^(3/4)) + 1/4*(sqrt(2)*a^(1/4)*c^(3/4)*d^2 + sqrt(2)*a^(3/4)*c^(1/4)*e^2 - 4*sqrt(a)*sqrt(c)*d*e)*arctan(1/2*s
qrt(2)*(2*sqrt(c)*x + sqrt(2)*a^(1/4)*c^(1/4))/sqrt(sqrt(a)*sqrt(c)))/(a^(3/4)*sqrt(sqrt(a)*sqrt(c))*c^(3/4))
+ 1/4*(sqrt(2)*a^(1/4)*c^(3/4)*d^2 + sqrt(2)*a^(3/4)*c^(1/4)*e^2 + 4*sqrt(a)*sqrt(c)*d*e)*arctan(1/2*sqrt(2)*(
2*sqrt(c)*x - sqrt(2)*a^(1/4)*c^(1/4))/sqrt(sqrt(a)*sqrt(c)))/(a^(3/4)*sqrt(sqrt(a)*sqrt(c))*c^(3/4))

Giac [A] (verification not implemented)

none

Time = 0.29 (sec) , antiderivative size = 287, normalized size of antiderivative = 0.99 \[ \int \frac {(d+e x)^2}{a+c x^4} \, dx=\frac {\sqrt {2} {\left (2 \, \sqrt {2} \sqrt {a c} c^{2} d e + \left (a c^{3}\right )^{\frac {1}{4}} c^{2} d^{2} + \left (a c^{3}\right )^{\frac {3}{4}} e^{2}\right )} \arctan \left (\frac {\sqrt {2} {\left (2 \, x + \sqrt {2} \left (\frac {a}{c}\right )^{\frac {1}{4}}\right )}}{2 \, \left (\frac {a}{c}\right )^{\frac {1}{4}}}\right )}{4 \, a c^{3}} + \frac {\sqrt {2} {\left (2 \, \sqrt {2} \sqrt {a c} c^{2} d e + \left (a c^{3}\right )^{\frac {1}{4}} c^{2} d^{2} + \left (a c^{3}\right )^{\frac {3}{4}} e^{2}\right )} \arctan \left (\frac {\sqrt {2} {\left (2 \, x - \sqrt {2} \left (\frac {a}{c}\right )^{\frac {1}{4}}\right )}}{2 \, \left (\frac {a}{c}\right )^{\frac {1}{4}}}\right )}{4 \, a c^{3}} + \frac {\sqrt {2} {\left (\left (a c^{3}\right )^{\frac {1}{4}} c^{2} d^{2} - \left (a c^{3}\right )^{\frac {3}{4}} e^{2}\right )} \log \left (x^{2} + \sqrt {2} x \left (\frac {a}{c}\right )^{\frac {1}{4}} + \sqrt {\frac {a}{c}}\right )}{8 \, a c^{3}} - \frac {\sqrt {2} {\left (\left (a c^{3}\right )^{\frac {1}{4}} c^{2} d^{2} - \left (a c^{3}\right )^{\frac {3}{4}} e^{2}\right )} \log \left (x^{2} - \sqrt {2} x \left (\frac {a}{c}\right )^{\frac {1}{4}} + \sqrt {\frac {a}{c}}\right )}{8 \, a c^{3}} \]

[In]

integrate((e*x+d)^2/(c*x^4+a),x, algorithm="giac")

[Out]

1/4*sqrt(2)*(2*sqrt(2)*sqrt(a*c)*c^2*d*e + (a*c^3)^(1/4)*c^2*d^2 + (a*c^3)^(3/4)*e^2)*arctan(1/2*sqrt(2)*(2*x
+ sqrt(2)*(a/c)^(1/4))/(a/c)^(1/4))/(a*c^3) + 1/4*sqrt(2)*(2*sqrt(2)*sqrt(a*c)*c^2*d*e + (a*c^3)^(1/4)*c^2*d^2
 + (a*c^3)^(3/4)*e^2)*arctan(1/2*sqrt(2)*(2*x - sqrt(2)*(a/c)^(1/4))/(a/c)^(1/4))/(a*c^3) + 1/8*sqrt(2)*((a*c^
3)^(1/4)*c^2*d^2 - (a*c^3)^(3/4)*e^2)*log(x^2 + sqrt(2)*x*(a/c)^(1/4) + sqrt(a/c))/(a*c^3) - 1/8*sqrt(2)*((a*c
^3)^(1/4)*c^2*d^2 - (a*c^3)^(3/4)*e^2)*log(x^2 - sqrt(2)*x*(a/c)^(1/4) + sqrt(a/c))/(a*c^3)

Mupad [B] (verification not implemented)

Time = 9.20 (sec) , antiderivative size = 556, normalized size of antiderivative = 1.91 \[ \int \frac {(d+e x)^2}{a+c x^4} \, dx=\sum _{k=1}^4\ln \left (3\,c^2\,d^4\,e^2-a\,c\,e^6+4\,c^2\,d^3\,e^3\,x-\mathrm {root}\left (256\,a^3\,c^3\,z^4+192\,a^2\,c^2\,d^2\,e^2\,z^2+32\,a^2\,c\,d\,e^5\,z-32\,a\,c^2\,d^5\,e\,z+2\,a\,c\,d^4\,e^4+c^2\,d^8+a^2\,e^8,z,k\right )\,c^3\,d^4\,x\,4-{\mathrm {root}\left (256\,a^3\,c^3\,z^4+192\,a^2\,c^2\,d^2\,e^2\,z^2+32\,a^2\,c\,d\,e^5\,z-32\,a\,c^2\,d^5\,e\,z+2\,a\,c\,d^4\,e^4+c^2\,d^8+a^2\,e^8,z,k\right )}^2\,a\,c^3\,d^2\,16+\mathrm {root}\left (256\,a^3\,c^3\,z^4+192\,a^2\,c^2\,d^2\,e^2\,z^2+32\,a^2\,c\,d\,e^5\,z-32\,a\,c^2\,d^5\,e\,z+2\,a\,c\,d^4\,e^4+c^2\,d^8+a^2\,e^8,z,k\right )\,a\,c^2\,e^4\,x\,4-\mathrm {root}\left (256\,a^3\,c^3\,z^4+192\,a^2\,c^2\,d^2\,e^2\,z^2+32\,a^2\,c\,d\,e^5\,z-32\,a\,c^2\,d^5\,e\,z+2\,a\,c\,d^4\,e^4+c^2\,d^8+a^2\,e^8,z,k\right )\,a\,c^2\,d\,e^3\,16+{\mathrm {root}\left (256\,a^3\,c^3\,z^4+192\,a^2\,c^2\,d^2\,e^2\,z^2+32\,a^2\,c\,d\,e^5\,z-32\,a\,c^2\,d^5\,e\,z+2\,a\,c\,d^4\,e^4+c^2\,d^8+a^2\,e^8,z,k\right )}^2\,a\,c^3\,d\,e\,x\,32\right )\,\mathrm {root}\left (256\,a^3\,c^3\,z^4+192\,a^2\,c^2\,d^2\,e^2\,z^2+32\,a^2\,c\,d\,e^5\,z-32\,a\,c^2\,d^5\,e\,z+2\,a\,c\,d^4\,e^4+c^2\,d^8+a^2\,e^8,z,k\right ) \]

[In]

int((d + e*x)^2/(a + c*x^4),x)

[Out]

symsum(log(3*c^2*d^4*e^2 - a*c*e^6 + 4*c^2*d^3*e^3*x - 4*root(256*a^3*c^3*z^4 + 192*a^2*c^2*d^2*e^2*z^2 + 32*a
^2*c*d*e^5*z - 32*a*c^2*d^5*e*z + 2*a*c*d^4*e^4 + c^2*d^8 + a^2*e^8, z, k)*c^3*d^4*x - 16*root(256*a^3*c^3*z^4
 + 192*a^2*c^2*d^2*e^2*z^2 + 32*a^2*c*d*e^5*z - 32*a*c^2*d^5*e*z + 2*a*c*d^4*e^4 + c^2*d^8 + a^2*e^8, z, k)^2*
a*c^3*d^2 + 4*root(256*a^3*c^3*z^4 + 192*a^2*c^2*d^2*e^2*z^2 + 32*a^2*c*d*e^5*z - 32*a*c^2*d^5*e*z + 2*a*c*d^4
*e^4 + c^2*d^8 + a^2*e^8, z, k)*a*c^2*e^4*x - 16*root(256*a^3*c^3*z^4 + 192*a^2*c^2*d^2*e^2*z^2 + 32*a^2*c*d*e
^5*z - 32*a*c^2*d^5*e*z + 2*a*c*d^4*e^4 + c^2*d^8 + a^2*e^8, z, k)*a*c^2*d*e^3 + 32*root(256*a^3*c^3*z^4 + 192
*a^2*c^2*d^2*e^2*z^2 + 32*a^2*c*d*e^5*z - 32*a*c^2*d^5*e*z + 2*a*c*d^4*e^4 + c^2*d^8 + a^2*e^8, z, k)^2*a*c^3*
d*e*x)*root(256*a^3*c^3*z^4 + 192*a^2*c^2*d^2*e^2*z^2 + 32*a^2*c*d*e^5*z - 32*a*c^2*d^5*e*z + 2*a*c*d^4*e^4 +
c^2*d^8 + a^2*e^8, z, k), k, 1, 4)