\(\int \frac {a-c x^4}{(a e+c d x^2) (d+e x^2) \sqrt {a+b x^2+c x^4}} \, dx\) [1019]

   Optimal result
   Rubi [A] (verified)
   Mathematica [C] (verified)
   Maple [A] (verified)
   Fricas [A] (verification not implemented)
   Sympy [F]
   Maxima [F]
   Giac [F]
   Mupad [F(-1)]

Optimal result

Integrand size = 46, antiderivative size = 80 \[ \int \frac {a-c x^4}{\left (a e+c d x^2\right ) \left (d+e x^2\right ) \sqrt {a+b x^2+c x^4}} \, dx=\frac {\arctan \left (\frac {\sqrt {c d^2-b d e+a e^2} x}{\sqrt {d} \sqrt {e} \sqrt {a+b x^2+c x^4}}\right )}{\sqrt {d} \sqrt {e} \sqrt {c d^2-b d e+a e^2}} \]

[Out]

arctan(x*(a*e^2-b*d*e+c*d^2)^(1/2)/d^(1/2)/e^(1/2)/(c*x^4+b*x^2+a)^(1/2))/d^(1/2)/e^(1/2)/(a*e^2-b*d*e+c*d^2)^
(1/2)

Rubi [A] (verified)

Time = 0.36 (sec) , antiderivative size = 80, normalized size of antiderivative = 1.00, number of steps used = 2, number of rules used = 2, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.043, Rules used = {2137, 211} \[ \int \frac {a-c x^4}{\left (a e+c d x^2\right ) \left (d+e x^2\right ) \sqrt {a+b x^2+c x^4}} \, dx=\frac {\arctan \left (\frac {x \sqrt {a e^2-b d e+c d^2}}{\sqrt {d} \sqrt {e} \sqrt {a+b x^2+c x^4}}\right )}{\sqrt {d} \sqrt {e} \sqrt {a e^2-b d e+c d^2}} \]

[In]

Int[(a - c*x^4)/((a*e + c*d*x^2)*(d + e*x^2)*Sqrt[a + b*x^2 + c*x^4]),x]

[Out]

ArcTan[(Sqrt[c*d^2 - b*d*e + a*e^2]*x)/(Sqrt[d]*Sqrt[e]*Sqrt[a + b*x^2 + c*x^4])]/(Sqrt[d]*Sqrt[e]*Sqrt[c*d^2
- b*d*e + a*e^2])

Rule 211

Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> Simp[(Rt[a/b, 2]/a)*ArcTan[x/Rt[a/b, 2]], x] /; FreeQ[{a, b}, x]
&& PosQ[a/b]

Rule 2137

Int[((u_)*((A_) + (B_.)*(x_)^4))/Sqrt[v_], x_Symbol] :> With[{a = Coeff[v, x, 0], b = Coeff[v, x, 2], c = Coef
f[v, x, 4], d = Coeff[1/u, x, 0], e = Coeff[1/u, x, 2], f = Coeff[1/u, x, 4]}, Dist[A, Subst[Int[1/(d - (b*d -
 a*e)*x^2), x], x, x/Sqrt[v]], x] /; EqQ[a*B + A*c, 0] && EqQ[c*d - a*f, 0]] /; FreeQ[{A, B}, x] && PolyQ[v, x
^2, 2] && PolyQ[1/u, x^2, 2]

Rubi steps \begin{align*} \text {integral}& = a \text {Subst}\left (\int \frac {1}{a d e-\left (a b d e-a \left (c d^2+a e^2\right )\right ) x^2} \, dx,x,\frac {x}{\sqrt {a+b x^2+c x^4}}\right ) \\ & = \frac {\tan ^{-1}\left (\frac {\sqrt {c d^2-b d e+a e^2} x}{\sqrt {d} \sqrt {e} \sqrt {a+b x^2+c x^4}}\right )}{\sqrt {d} \sqrt {e} \sqrt {c d^2-b d e+a e^2}} \\ \end{align*}

Mathematica [C] (verified)

Result contains higher order function than in optimal. Order 4 vs. order 3 in optimal.

Time = 10.57 (sec) , antiderivative size = 383, normalized size of antiderivative = 4.79 \[ \int \frac {a-c x^4}{\left (a e+c d x^2\right ) \left (d+e x^2\right ) \sqrt {a+b x^2+c x^4}} \, dx=\frac {i \sqrt {\frac {b+\sqrt {b^2-4 a c}+2 c x^2}{b+\sqrt {b^2-4 a c}}} \sqrt {1+\frac {2 c x^2}{b-\sqrt {b^2-4 a c}}} \left (\operatorname {EllipticF}\left (i \text {arcsinh}\left (\sqrt {2} \sqrt {\frac {c}{b+\sqrt {b^2-4 a c}}} x\right ),\frac {b+\sqrt {b^2-4 a c}}{b-\sqrt {b^2-4 a c}}\right )-\operatorname {EllipticPi}\left (\frac {\left (b+\sqrt {b^2-4 a c}\right ) d}{2 a e},i \text {arcsinh}\left (\sqrt {2} \sqrt {\frac {c}{b+\sqrt {b^2-4 a c}}} x\right ),\frac {b+\sqrt {b^2-4 a c}}{b-\sqrt {b^2-4 a c}}\right )-\operatorname {EllipticPi}\left (\frac {\left (b+\sqrt {b^2-4 a c}\right ) e}{2 c d},i \text {arcsinh}\left (\sqrt {2} \sqrt {\frac {c}{b+\sqrt {b^2-4 a c}}} x\right ),\frac {b+\sqrt {b^2-4 a c}}{b-\sqrt {b^2-4 a c}}\right )\right )}{\sqrt {2} \sqrt {\frac {c}{b+\sqrt {b^2-4 a c}}} d e \sqrt {a+b x^2+c x^4}} \]

[In]

Integrate[(a - c*x^4)/((a*e + c*d*x^2)*(d + e*x^2)*Sqrt[a + b*x^2 + c*x^4]),x]

[Out]

(I*Sqrt[(b + Sqrt[b^2 - 4*a*c] + 2*c*x^2)/(b + Sqrt[b^2 - 4*a*c])]*Sqrt[1 + (2*c*x^2)/(b - Sqrt[b^2 - 4*a*c])]
*(EllipticF[I*ArcSinh[Sqrt[2]*Sqrt[c/(b + Sqrt[b^2 - 4*a*c])]*x], (b + Sqrt[b^2 - 4*a*c])/(b - Sqrt[b^2 - 4*a*
c])] - EllipticPi[((b + Sqrt[b^2 - 4*a*c])*d)/(2*a*e), I*ArcSinh[Sqrt[2]*Sqrt[c/(b + Sqrt[b^2 - 4*a*c])]*x], (
b + Sqrt[b^2 - 4*a*c])/(b - Sqrt[b^2 - 4*a*c])] - EllipticPi[((b + Sqrt[b^2 - 4*a*c])*e)/(2*c*d), I*ArcSinh[Sq
rt[2]*Sqrt[c/(b + Sqrt[b^2 - 4*a*c])]*x], (b + Sqrt[b^2 - 4*a*c])/(b - Sqrt[b^2 - 4*a*c])]))/(Sqrt[2]*Sqrt[c/(
b + Sqrt[b^2 - 4*a*c])]*d*e*Sqrt[a + b*x^2 + c*x^4])

Maple [A] (verified)

Time = 3.40 (sec) , antiderivative size = 66, normalized size of antiderivative = 0.82

method result size
default \(-\frac {\arctan \left (\frac {d e \sqrt {c \,x^{4}+b \,x^{2}+a}}{x \sqrt {\left (a \,e^{2}-b d e +c \,d^{2}\right ) d e}}\right )}{\sqrt {\left (a \,e^{2}-b d e +c \,d^{2}\right ) d e}}\) \(66\)
elliptic \(-\frac {\arctan \left (\frac {d e \sqrt {c \,x^{4}+b \,x^{2}+a}}{x \sqrt {\left (a \,e^{2}-b d e +c \,d^{2}\right ) d e}}\right )}{\sqrt {\left (a \,e^{2}-b d e +c \,d^{2}\right ) d e}}\) \(66\)
pseudoelliptic \(-\frac {\arctan \left (\frac {d e \sqrt {c \,x^{4}+b \,x^{2}+a}}{x \sqrt {\left (a \,e^{2}-b d e +c \,d^{2}\right ) d e}}\right )}{\sqrt {\left (a \,e^{2}-b d e +c \,d^{2}\right ) d e}}\) \(66\)

[In]

int((-c*x^4+a)/(c*d*x^2+a*e)/(e*x^2+d)/(c*x^4+b*x^2+a)^(1/2),x,method=_RETURNVERBOSE)

[Out]

-1/((a*e^2-b*d*e+c*d^2)*d*e)^(1/2)*arctan(d*e*(c*x^4+b*x^2+a)^(1/2)/x/((a*e^2-b*d*e+c*d^2)*d*e)^(1/2))

Fricas [A] (verification not implemented)

none

Time = 28.97 (sec) , antiderivative size = 472, normalized size of antiderivative = 5.90 \[ \int \frac {a-c x^4}{\left (a e+c d x^2\right ) \left (d+e x^2\right ) \sqrt {a+b x^2+c x^4}} \, dx=\left [-\frac {\sqrt {-c d^{3} e + b d^{2} e^{2} - a d e^{3}} \log \left (-\frac {c^{2} d^{2} e^{2} x^{8} - 2 \, {\left (3 \, c^{2} d^{3} e - 4 \, b c d^{2} e^{2} + 3 \, a c d e^{3}\right )} x^{6} + a^{2} d^{2} e^{2} + {\left (c^{2} d^{4} - 8 \, b c d^{3} e - 8 \, a b d e^{3} + a^{2} e^{4} + 4 \, {\left (2 \, b^{2} + a c\right )} d^{2} e^{2}\right )} x^{4} - 2 \, {\left (3 \, a c d^{3} e - 4 \, a b d^{2} e^{2} + 3 \, a^{2} d e^{3}\right )} x^{2} + 4 \, {\left (c d e x^{5} + a d e x - {\left (c d^{2} - 2 \, b d e + a e^{2}\right )} x^{3}\right )} \sqrt {-c d^{3} e + b d^{2} e^{2} - a d e^{3}} \sqrt {c x^{4} + b x^{2} + a}}{c^{2} d^{2} e^{2} x^{8} + 2 \, {\left (c^{2} d^{3} e + a c d e^{3}\right )} x^{6} + a^{2} d^{2} e^{2} + {\left (c^{2} d^{4} + 4 \, a c d^{2} e^{2} + a^{2} e^{4}\right )} x^{4} + 2 \, {\left (a c d^{3} e + a^{2} d e^{3}\right )} x^{2}}\right )}{4 \, {\left (c d^{3} e - b d^{2} e^{2} + a d e^{3}\right )}}, \frac {\arctan \left (\frac {2 \, \sqrt {c d^{3} e - b d^{2} e^{2} + a d e^{3}} \sqrt {c x^{4} + b x^{2} + a} x}{c d e x^{4} + a d e - {\left (c d^{2} - 2 \, b d e + a e^{2}\right )} x^{2}}\right )}{2 \, \sqrt {c d^{3} e - b d^{2} e^{2} + a d e^{3}}}\right ] \]

[In]

integrate((-c*x^4+a)/(c*d*x^2+a*e)/(e*x^2+d)/(c*x^4+b*x^2+a)^(1/2),x, algorithm="fricas")

[Out]

[-1/4*sqrt(-c*d^3*e + b*d^2*e^2 - a*d*e^3)*log(-(c^2*d^2*e^2*x^8 - 2*(3*c^2*d^3*e - 4*b*c*d^2*e^2 + 3*a*c*d*e^
3)*x^6 + a^2*d^2*e^2 + (c^2*d^4 - 8*b*c*d^3*e - 8*a*b*d*e^3 + a^2*e^4 + 4*(2*b^2 + a*c)*d^2*e^2)*x^4 - 2*(3*a*
c*d^3*e - 4*a*b*d^2*e^2 + 3*a^2*d*e^3)*x^2 + 4*(c*d*e*x^5 + a*d*e*x - (c*d^2 - 2*b*d*e + a*e^2)*x^3)*sqrt(-c*d
^3*e + b*d^2*e^2 - a*d*e^3)*sqrt(c*x^4 + b*x^2 + a))/(c^2*d^2*e^2*x^8 + 2*(c^2*d^3*e + a*c*d*e^3)*x^6 + a^2*d^
2*e^2 + (c^2*d^4 + 4*a*c*d^2*e^2 + a^2*e^4)*x^4 + 2*(a*c*d^3*e + a^2*d*e^3)*x^2))/(c*d^3*e - b*d^2*e^2 + a*d*e
^3), 1/2*arctan(2*sqrt(c*d^3*e - b*d^2*e^2 + a*d*e^3)*sqrt(c*x^4 + b*x^2 + a)*x/(c*d*e*x^4 + a*d*e - (c*d^2 -
2*b*d*e + a*e^2)*x^2))/sqrt(c*d^3*e - b*d^2*e^2 + a*d*e^3)]

Sympy [F]

\[ \int \frac {a-c x^4}{\left (a e+c d x^2\right ) \left (d+e x^2\right ) \sqrt {a+b x^2+c x^4}} \, dx=- \int \left (- \frac {a}{a d e \sqrt {a + b x^{2} + c x^{4}} + a e^{2} x^{2} \sqrt {a + b x^{2} + c x^{4}} + c d^{2} x^{2} \sqrt {a + b x^{2} + c x^{4}} + c d e x^{4} \sqrt {a + b x^{2} + c x^{4}}}\right )\, dx - \int \frac {c x^{4}}{a d e \sqrt {a + b x^{2} + c x^{4}} + a e^{2} x^{2} \sqrt {a + b x^{2} + c x^{4}} + c d^{2} x^{2} \sqrt {a + b x^{2} + c x^{4}} + c d e x^{4} \sqrt {a + b x^{2} + c x^{4}}}\, dx \]

[In]

integrate((-c*x**4+a)/(c*d*x**2+a*e)/(e*x**2+d)/(c*x**4+b*x**2+a)**(1/2),x)

[Out]

-Integral(-a/(a*d*e*sqrt(a + b*x**2 + c*x**4) + a*e**2*x**2*sqrt(a + b*x**2 + c*x**4) + c*d**2*x**2*sqrt(a + b
*x**2 + c*x**4) + c*d*e*x**4*sqrt(a + b*x**2 + c*x**4)), x) - Integral(c*x**4/(a*d*e*sqrt(a + b*x**2 + c*x**4)
 + a*e**2*x**2*sqrt(a + b*x**2 + c*x**4) + c*d**2*x**2*sqrt(a + b*x**2 + c*x**4) + c*d*e*x**4*sqrt(a + b*x**2
+ c*x**4)), x)

Maxima [F]

\[ \int \frac {a-c x^4}{\left (a e+c d x^2\right ) \left (d+e x^2\right ) \sqrt {a+b x^2+c x^4}} \, dx=\int { -\frac {c x^{4} - a}{\sqrt {c x^{4} + b x^{2} + a} {\left (c d x^{2} + a e\right )} {\left (e x^{2} + d\right )}} \,d x } \]

[In]

integrate((-c*x^4+a)/(c*d*x^2+a*e)/(e*x^2+d)/(c*x^4+b*x^2+a)^(1/2),x, algorithm="maxima")

[Out]

-integrate((c*x^4 - a)/(sqrt(c*x^4 + b*x^2 + a)*(c*d*x^2 + a*e)*(e*x^2 + d)), x)

Giac [F]

\[ \int \frac {a-c x^4}{\left (a e+c d x^2\right ) \left (d+e x^2\right ) \sqrt {a+b x^2+c x^4}} \, dx=\int { -\frac {c x^{4} - a}{\sqrt {c x^{4} + b x^{2} + a} {\left (c d x^{2} + a e\right )} {\left (e x^{2} + d\right )}} \,d x } \]

[In]

integrate((-c*x^4+a)/(c*d*x^2+a*e)/(e*x^2+d)/(c*x^4+b*x^2+a)^(1/2),x, algorithm="giac")

[Out]

integrate(-(c*x^4 - a)/(sqrt(c*x^4 + b*x^2 + a)*(c*d*x^2 + a*e)*(e*x^2 + d)), x)

Mupad [F(-1)]

Timed out. \[ \int \frac {a-c x^4}{\left (a e+c d x^2\right ) \left (d+e x^2\right ) \sqrt {a+b x^2+c x^4}} \, dx=\int \frac {a-c\,x^4}{\left (e\,x^2+d\right )\,\left (c\,d\,x^2+a\,e\right )\,\sqrt {c\,x^4+b\,x^2+a}} \,d x \]

[In]

int((a - c*x^4)/((d + e*x^2)*(a*e + c*d*x^2)*(a + b*x^2 + c*x^4)^(1/2)),x)

[Out]

int((a - c*x^4)/((d + e*x^2)*(a*e + c*d*x^2)*(a + b*x^2 + c*x^4)^(1/2)), x)