\(\int \frac {1+\sqrt {3}+x}{(1-\sqrt {3}+x) \sqrt {-1-x^3}} \, dx\) [104]

   Optimal result
   Rubi [A] (verified)
   Mathematica [A] (verified)
   Maple [C] (verified)
   Fricas [A] (verification not implemented)
   Sympy [F]
   Maxima [F]
   Giac [F(-2)]
   Mupad [F(-1)]

Optimal result

Integrand size = 32, antiderivative size = 44 \[ \int \frac {1+\sqrt {3}+x}{\left (1-\sqrt {3}+x\right ) \sqrt {-1-x^3}} \, dx=-\frac {2 \arctan \left (\frac {\sqrt {-3+2 \sqrt {3}} (1+x)}{\sqrt {-1-x^3}}\right )}{\sqrt {-3+2 \sqrt {3}}} \]

[Out]

-2*arctan((1+x)*(-3+2*3^(1/2))^(1/2)/(-x^3-1)^(1/2))/(-3+2*3^(1/2))^(1/2)

Rubi [A] (verified)

Time = 0.07 (sec) , antiderivative size = 44, normalized size of antiderivative = 1.00, number of steps used = 2, number of rules used = 2, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.062, Rules used = {2165, 209} \[ \int \frac {1+\sqrt {3}+x}{\left (1-\sqrt {3}+x\right ) \sqrt {-1-x^3}} \, dx=-\frac {2 \arctan \left (\frac {\sqrt {2 \sqrt {3}-3} (x+1)}{\sqrt {-x^3-1}}\right )}{\sqrt {2 \sqrt {3}-3}} \]

[In]

Int[(1 + Sqrt[3] + x)/((1 - Sqrt[3] + x)*Sqrt[-1 - x^3]),x]

[Out]

(-2*ArcTan[(Sqrt[-3 + 2*Sqrt[3]]*(1 + x))/Sqrt[-1 - x^3]])/Sqrt[-3 + 2*Sqrt[3]]

Rule 209

Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> Simp[(1/(Rt[a, 2]*Rt[b, 2]))*ArcTan[Rt[b, 2]*(x/Rt[a, 2])], x] /;
 FreeQ[{a, b}, x] && PosQ[a/b] && (GtQ[a, 0] || GtQ[b, 0])

Rule 2165

Int[((e_) + (f_.)*(x_))/(((c_) + (d_.)*(x_))*Sqrt[(a_) + (b_.)*(x_)^3]), x_Symbol] :> With[{k = Simplify[(d*e
+ 2*c*f)/(c*f)]}, Dist[(1 + k)*(e/d), Subst[Int[1/(1 + (3 + 2*k)*a*x^2), x], x, (1 + (1 + k)*d*(x/c))/Sqrt[a +
 b*x^3]], x]] /; FreeQ[{a, b, c, d, e, f}, x] && NeQ[d*e - c*f, 0] && EqQ[b^2*c^6 - 20*a*b*c^3*d^3 - 8*a^2*d^6
, 0] && EqQ[6*a*d^4*e - c*f*(b*c^3 - 22*a*d^3), 0]

Rubi steps \begin{align*} \text {integral}& = -\left (2 \text {Subst}\left (\int \frac {1}{1-\left (3-2 \sqrt {3}\right ) x^2} \, dx,x,\frac {1+x}{\sqrt {-1-x^3}}\right )\right ) \\ & = -\frac {2 \tan ^{-1}\left (\frac {\sqrt {-3+2 \sqrt {3}} (1+x)}{\sqrt {-1-x^3}}\right )}{\sqrt {-3+2 \sqrt {3}}} \\ \end{align*}

Mathematica [A] (verified)

Time = 1.81 (sec) , antiderivative size = 51, normalized size of antiderivative = 1.16 \[ \int \frac {1+\sqrt {3}+x}{\left (1-\sqrt {3}+x\right ) \sqrt {-1-x^3}} \, dx=2 \sqrt {1+\frac {2}{\sqrt {3}}} \arctan \left (\frac {\sqrt {-3+2 \sqrt {3}} \sqrt {-1-x^3}}{1-x+x^2}\right ) \]

[In]

Integrate[(1 + Sqrt[3] + x)/((1 - Sqrt[3] + x)*Sqrt[-1 - x^3]),x]

[Out]

2*Sqrt[1 + 2/Sqrt[3]]*ArcTan[(Sqrt[-3 + 2*Sqrt[3]]*Sqrt[-1 - x^3])/(1 - x + x^2)]

Maple [C] (verified)

Result contains higher order function than in optimal. Order 9 vs. order 3.

Time = 3.28 (sec) , antiderivative size = 134, normalized size of antiderivative = 3.05

method result size
trager \(\frac {\operatorname {RootOf}\left (\textit {\_Z}^{2}+24 \sqrt {3}+36\right ) \ln \left (-\frac {6 \operatorname {RootOf}\left (\textit {\_Z}^{2}+24 \sqrt {3}+36\right ) x^{2}+4 \operatorname {RootOf}\left (\textit {\_Z}^{2}+24 \sqrt {3}+36\right ) \sqrt {3}\, x^{2}-4 \sqrt {3}\, \operatorname {RootOf}\left (\textit {\_Z}^{2}+24 \sqrt {3}+36\right ) x +4 \operatorname {RootOf}\left (\textit {\_Z}^{2}+24 \sqrt {3}+36\right ) \sqrt {3}+48 \sqrt {-x^{3}-1}\, \sqrt {3}+12 \operatorname {RootOf}\left (\textit {\_Z}^{2}+24 \sqrt {3}+36\right )+72 \sqrt {-x^{3}-1}}{\left (x \sqrt {3}+x -2\right )^{2}}\right )}{6}\) \(134\)
default \(-\frac {2 i \sqrt {3}\, \sqrt {i \left (x -\frac {1}{2}-\frac {i \sqrt {3}}{2}\right ) \sqrt {3}}\, \sqrt {\frac {x +1}{\frac {3}{2}+\frac {i \sqrt {3}}{2}}}\, \sqrt {-i \left (x -\frac {1}{2}+\frac {i \sqrt {3}}{2}\right ) \sqrt {3}}\, F\left (\frac {\sqrt {3}\, \sqrt {i \left (x -\frac {1}{2}-\frac {i \sqrt {3}}{2}\right ) \sqrt {3}}}{3}, \sqrt {\frac {i \sqrt {3}}{\frac {3}{2}+\frac {i \sqrt {3}}{2}}}\right )}{3 \sqrt {-x^{3}-1}}-\frac {4 i \sqrt {i \left (x -\frac {1}{2}-\frac {i \sqrt {3}}{2}\right ) \sqrt {3}}\, \sqrt {\frac {x +1}{\frac {3}{2}+\frac {i \sqrt {3}}{2}}}\, \sqrt {-i \left (x -\frac {1}{2}+\frac {i \sqrt {3}}{2}\right ) \sqrt {3}}\, \Pi \left (\frac {\sqrt {3}\, \sqrt {i \left (x -\frac {1}{2}-\frac {i \sqrt {3}}{2}\right ) \sqrt {3}}}{3}, \frac {i \sqrt {3}}{-\sqrt {3}+\frac {3}{2}+\frac {i \sqrt {3}}{2}}, \sqrt {\frac {i \sqrt {3}}{\frac {3}{2}+\frac {i \sqrt {3}}{2}}}\right )}{\sqrt {-x^{3}-1}\, \left (-\sqrt {3}+\frac {3}{2}+\frac {i \sqrt {3}}{2}\right )}\) \(247\)
elliptic \(-\frac {2 i \sqrt {3}\, \sqrt {i \left (x -\frac {1}{2}-\frac {i \sqrt {3}}{2}\right ) \sqrt {3}}\, \sqrt {\frac {x +1}{\frac {3}{2}+\frac {i \sqrt {3}}{2}}}\, \sqrt {-i \left (x -\frac {1}{2}+\frac {i \sqrt {3}}{2}\right ) \sqrt {3}}\, F\left (\frac {\sqrt {3}\, \sqrt {i \left (x -\frac {1}{2}-\frac {i \sqrt {3}}{2}\right ) \sqrt {3}}}{3}, \sqrt {\frac {i \sqrt {3}}{\frac {3}{2}+\frac {i \sqrt {3}}{2}}}\right )}{3 \sqrt {-x^{3}-1}}-\frac {4 i \sqrt {i \left (x -\frac {1}{2}-\frac {i \sqrt {3}}{2}\right ) \sqrt {3}}\, \sqrt {\frac {x +1}{\frac {3}{2}+\frac {i \sqrt {3}}{2}}}\, \sqrt {-i \left (x -\frac {1}{2}+\frac {i \sqrt {3}}{2}\right ) \sqrt {3}}\, \Pi \left (\frac {\sqrt {3}\, \sqrt {i \left (x -\frac {1}{2}-\frac {i \sqrt {3}}{2}\right ) \sqrt {3}}}{3}, \frac {i \sqrt {3}}{-\sqrt {3}+\frac {3}{2}+\frac {i \sqrt {3}}{2}}, \sqrt {\frac {i \sqrt {3}}{\frac {3}{2}+\frac {i \sqrt {3}}{2}}}\right )}{\sqrt {-x^{3}-1}\, \left (-\sqrt {3}+\frac {3}{2}+\frac {i \sqrt {3}}{2}\right )}\) \(247\)

[In]

int((1+x+3^(1/2))/(1+x-3^(1/2))/(-x^3-1)^(1/2),x,method=_RETURNVERBOSE)

[Out]

1/6*RootOf(_Z^2+24*3^(1/2)+36)*ln(-(6*RootOf(_Z^2+24*3^(1/2)+36)*x^2+4*RootOf(_Z^2+24*3^(1/2)+36)*3^(1/2)*x^2-
4*3^(1/2)*RootOf(_Z^2+24*3^(1/2)+36)*x+4*RootOf(_Z^2+24*3^(1/2)+36)*3^(1/2)+48*(-x^3-1)^(1/2)*3^(1/2)+12*RootO
f(_Z^2+24*3^(1/2)+36)+72*(-x^3-1)^(1/2))/(x*3^(1/2)+x-2)^2)

Fricas [A] (verification not implemented)

none

Time = 0.29 (sec) , antiderivative size = 59, normalized size of antiderivative = 1.34 \[ \int \frac {1+\sqrt {3}+x}{\left (1-\sqrt {3}+x\right ) \sqrt {-1-x^3}} \, dx=\frac {1}{3} \, \sqrt {3} \sqrt {2 \, \sqrt {3} + 3} \arctan \left (\frac {\sqrt {-x^{3} - 1} {\left (\sqrt {3} {\left (x^{2} - 4 \, x - 2\right )} + 6 \, x + 6\right )} \sqrt {2 \, \sqrt {3} + 3}}{6 \, {\left (x^{3} + 1\right )}}\right ) \]

[In]

integrate((1+x+3^(1/2))/(1+x-3^(1/2))/(-x^3-1)^(1/2),x, algorithm="fricas")

[Out]

1/3*sqrt(3)*sqrt(2*sqrt(3) + 3)*arctan(1/6*sqrt(-x^3 - 1)*(sqrt(3)*(x^2 - 4*x - 2) + 6*x + 6)*sqrt(2*sqrt(3) +
 3)/(x^3 + 1))

Sympy [F]

\[ \int \frac {1+\sqrt {3}+x}{\left (1-\sqrt {3}+x\right ) \sqrt {-1-x^3}} \, dx=\int \frac {x + 1 + \sqrt {3}}{\sqrt {- \left (x + 1\right ) \left (x^{2} - x + 1\right )} \left (x - \sqrt {3} + 1\right )}\, dx \]

[In]

integrate((1+x+3**(1/2))/(1+x-3**(1/2))/(-x**3-1)**(1/2),x)

[Out]

Integral((x + 1 + sqrt(3))/(sqrt(-(x + 1)*(x**2 - x + 1))*(x - sqrt(3) + 1)), x)

Maxima [F]

\[ \int \frac {1+\sqrt {3}+x}{\left (1-\sqrt {3}+x\right ) \sqrt {-1-x^3}} \, dx=\int { \frac {x + \sqrt {3} + 1}{\sqrt {-x^{3} - 1} {\left (x - \sqrt {3} + 1\right )}} \,d x } \]

[In]

integrate((1+x+3^(1/2))/(1+x-3^(1/2))/(-x^3-1)^(1/2),x, algorithm="maxima")

[Out]

integrate((x + sqrt(3) + 1)/(sqrt(-x^3 - 1)*(x - sqrt(3) + 1)), x)

Giac [F(-2)]

Exception generated. \[ \int \frac {1+\sqrt {3}+x}{\left (1-\sqrt {3}+x\right ) \sqrt {-1-x^3}} \, dx=\text {Exception raised: TypeError} \]

[In]

integrate((1+x+3^(1/2))/(1+x-3^(1/2))/(-x^3-1)^(1/2),x, algorithm="giac")

[Out]

Exception raised: TypeError >> an error occurred running a Giac command:INPUT:sage2:=int(sage0,sageVARx):;OUTP
UT:Unable to divide, perhaps due to rounding error%%%{%%{[-1,-1]:[1,0,-3]%%},[2]%%%} / %%%{%%{[-2,4]:[1,0,-3]%
%},[2]%%%}

Mupad [F(-1)]

Timed out. \[ \int \frac {1+\sqrt {3}+x}{\left (1-\sqrt {3}+x\right ) \sqrt {-1-x^3}} \, dx=\text {Hanged} \]

[In]

int((x + 3^(1/2) + 1)/((- x^3 - 1)^(1/2)*(x - 3^(1/2) + 1)),x)

[Out]

\text{Hanged}