\(\int \frac {e+f x}{x \sqrt {1+x^3}} \, dx\) [168]

   Optimal result
   Rubi [A] (verified)
   Mathematica [C] (verified)
   Maple [C] (verified)
   Fricas [C] (verification not implemented)
   Sympy [A] (verification not implemented)
   Maxima [F]
   Giac [F]
   Mupad [B] (verification not implemented)

Optimal result

Integrand size = 18, antiderivative size = 120 \[ \int \frac {e+f x}{x \sqrt {1+x^3}} \, dx=-\frac {2}{3} e \text {arctanh}\left (\sqrt {1+x^3}\right )+\frac {2 \sqrt {2+\sqrt {3}} f (1+x) \sqrt {\frac {1-x+x^2}{\left (1+\sqrt {3}+x\right )^2}} \operatorname {EllipticF}\left (\arcsin \left (\frac {1-\sqrt {3}+x}{1+\sqrt {3}+x}\right ),-7-4 \sqrt {3}\right )}{\sqrt [4]{3} \sqrt {\frac {1+x}{\left (1+\sqrt {3}+x\right )^2}} \sqrt {1+x^3}} \]

[Out]

-2/3*e*arctanh((x^3+1)^(1/2))+2/3*f*(1+x)*EllipticF((1+x-3^(1/2))/(1+x+3^(1/2)),I*3^(1/2)+2*I)*(1/2*6^(1/2)+1/
2*2^(1/2))*((x^2-x+1)/(1+x+3^(1/2))^2)^(1/2)*3^(3/4)/(x^3+1)^(1/2)/((1+x)/(1+x+3^(1/2))^2)^(1/2)

Rubi [A] (verified)

Time = 0.04 (sec) , antiderivative size = 120, normalized size of antiderivative = 1.00, number of steps used = 6, number of rules used = 6, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.333, Rules used = {1846, 272, 65, 213, 12, 224} \[ \int \frac {e+f x}{x \sqrt {1+x^3}} \, dx=\frac {2 \sqrt {2+\sqrt {3}} f (x+1) \sqrt {\frac {x^2-x+1}{\left (x+\sqrt {3}+1\right )^2}} \operatorname {EllipticF}\left (\arcsin \left (\frac {x-\sqrt {3}+1}{x+\sqrt {3}+1}\right ),-7-4 \sqrt {3}\right )}{\sqrt [4]{3} \sqrt {\frac {x+1}{\left (x+\sqrt {3}+1\right )^2}} \sqrt {x^3+1}}-\frac {2}{3} e \text {arctanh}\left (\sqrt {x^3+1}\right ) \]

[In]

Int[(e + f*x)/(x*Sqrt[1 + x^3]),x]

[Out]

(-2*e*ArcTanh[Sqrt[1 + x^3]])/3 + (2*Sqrt[2 + Sqrt[3]]*f*(1 + x)*Sqrt[(1 - x + x^2)/(1 + Sqrt[3] + x)^2]*Ellip
ticF[ArcSin[(1 - Sqrt[3] + x)/(1 + Sqrt[3] + x)], -7 - 4*Sqrt[3]])/(3^(1/4)*Sqrt[(1 + x)/(1 + Sqrt[3] + x)^2]*
Sqrt[1 + x^3])

Rule 12

Int[(a_)*(u_), x_Symbol] :> Dist[a, Int[u, x], x] /; FreeQ[a, x] &&  !MatchQ[u, (b_)*(v_) /; FreeQ[b, x]]

Rule 65

Int[((a_.) + (b_.)*(x_))^(m_)*((c_.) + (d_.)*(x_))^(n_), x_Symbol] :> With[{p = Denominator[m]}, Dist[p/b, Sub
st[Int[x^(p*(m + 1) - 1)*(c - a*(d/b) + d*(x^p/b))^n, x], x, (a + b*x)^(1/p)], x]] /; FreeQ[{a, b, c, d}, x] &
& NeQ[b*c - a*d, 0] && LtQ[-1, m, 0] && LeQ[-1, n, 0] && LeQ[Denominator[n], Denominator[m]] && IntLinearQ[a,
b, c, d, m, n, x]

Rule 213

Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> Simp[(-(Rt[-a, 2]*Rt[b, 2])^(-1))*ArcTanh[Rt[b, 2]*(x/Rt[-a, 2])]
, x] /; FreeQ[{a, b}, x] && NegQ[a/b] && (LtQ[a, 0] || GtQ[b, 0])

Rule 224

Int[1/Sqrt[(a_) + (b_.)*(x_)^3], x_Symbol] :> With[{r = Numer[Rt[b/a, 3]], s = Denom[Rt[b/a, 3]]}, Simp[2*Sqrt
[2 + Sqrt[3]]*(s + r*x)*(Sqrt[(s^2 - r*s*x + r^2*x^2)/((1 + Sqrt[3])*s + r*x)^2]/(3^(1/4)*r*Sqrt[a + b*x^3]*Sq
rt[s*((s + r*x)/((1 + Sqrt[3])*s + r*x)^2)]))*EllipticF[ArcSin[((1 - Sqrt[3])*s + r*x)/((1 + Sqrt[3])*s + r*x)
], -7 - 4*Sqrt[3]], x]] /; FreeQ[{a, b}, x] && PosQ[a]

Rule 272

Int[(x_)^(m_.)*((a_) + (b_.)*(x_)^(n_))^(p_), x_Symbol] :> Dist[1/n, Subst[Int[x^(Simplify[(m + 1)/n] - 1)*(a
+ b*x)^p, x], x, x^n], x] /; FreeQ[{a, b, m, n, p}, x] && IntegerQ[Simplify[(m + 1)/n]]

Rule 1846

Int[(Pq_)/((x_)*Sqrt[(a_) + (b_.)*(x_)^(n_)]), x_Symbol] :> Dist[Coeff[Pq, x, 0], Int[1/(x*Sqrt[a + b*x^n]), x
], x] + Int[ExpandToSum[(Pq - Coeff[Pq, x, 0])/x, x]/Sqrt[a + b*x^n], x] /; FreeQ[{a, b}, x] && PolyQ[Pq, x] &
& IGtQ[n, 0] && NeQ[Coeff[Pq, x, 0], 0]

Rubi steps \begin{align*} \text {integral}& = e \int \frac {1}{x \sqrt {1+x^3}} \, dx+\int \frac {f}{\sqrt {1+x^3}} \, dx \\ & = \frac {1}{3} e \text {Subst}\left (\int \frac {1}{x \sqrt {1+x}} \, dx,x,x^3\right )+f \int \frac {1}{\sqrt {1+x^3}} \, dx \\ & = \frac {2 \sqrt {2+\sqrt {3}} f (1+x) \sqrt {\frac {1-x+x^2}{\left (1+\sqrt {3}+x\right )^2}} F\left (\sin ^{-1}\left (\frac {1-\sqrt {3}+x}{1+\sqrt {3}+x}\right )|-7-4 \sqrt {3}\right )}{\sqrt [4]{3} \sqrt {\frac {1+x}{\left (1+\sqrt {3}+x\right )^2}} \sqrt {1+x^3}}+\frac {1}{3} (2 e) \text {Subst}\left (\int \frac {1}{-1+x^2} \, dx,x,\sqrt {1+x^3}\right ) \\ & = -\frac {2}{3} e \tanh ^{-1}\left (\sqrt {1+x^3}\right )+\frac {2 \sqrt {2+\sqrt {3}} f (1+x) \sqrt {\frac {1-x+x^2}{\left (1+\sqrt {3}+x\right )^2}} F\left (\sin ^{-1}\left (\frac {1-\sqrt {3}+x}{1+\sqrt {3}+x}\right )|-7-4 \sqrt {3}\right )}{\sqrt [4]{3} \sqrt {\frac {1+x}{\left (1+\sqrt {3}+x\right )^2}} \sqrt {1+x^3}} \\ \end{align*}

Mathematica [C] (verified)

Result contains higher order function than in optimal. Order 5 vs. order 4 in optimal.

Time = 10.04 (sec) , antiderivative size = 34, normalized size of antiderivative = 0.28 \[ \int \frac {e+f x}{x \sqrt {1+x^3}} \, dx=-\frac {2}{3} e \text {arctanh}\left (\sqrt {1+x^3}\right )+f x \operatorname {Hypergeometric2F1}\left (\frac {1}{3},\frac {1}{2},\frac {4}{3},-x^3\right ) \]

[In]

Integrate[(e + f*x)/(x*Sqrt[1 + x^3]),x]

[Out]

(-2*e*ArcTanh[Sqrt[1 + x^3]])/3 + f*x*Hypergeometric2F1[1/3, 1/2, 4/3, -x^3]

Maple [C] (verified)

Result contains higher order function than in optimal. Order 5 vs. order 4.

Time = 0.98 (sec) , antiderivative size = 53, normalized size of antiderivative = 0.44

method result size
meijerg \(f x {}_{2}^{}{\moversetsp {}{\mundersetsp {}{F_{1}^{}}}}\left (\frac {1}{3},\frac {1}{2};\frac {4}{3};-x^{3}\right )+\frac {e \left (-2 \sqrt {\pi }\, \ln \left (\frac {1}{2}+\frac {\sqrt {x^{3}+1}}{2}\right )+\left (-2 \ln \left (2\right )+3 \ln \left (x \right )\right ) \sqrt {\pi }\right )}{3 \sqrt {\pi }}\) \(53\)
default \(\frac {2 f \left (\frac {3}{2}-\frac {i \sqrt {3}}{2}\right ) \sqrt {\frac {x +1}{\frac {3}{2}-\frac {i \sqrt {3}}{2}}}\, \sqrt {\frac {x -\frac {1}{2}-\frac {i \sqrt {3}}{2}}{-\frac {3}{2}-\frac {i \sqrt {3}}{2}}}\, \sqrt {\frac {x -\frac {1}{2}+\frac {i \sqrt {3}}{2}}{-\frac {3}{2}+\frac {i \sqrt {3}}{2}}}\, F\left (\sqrt {\frac {x +1}{\frac {3}{2}-\frac {i \sqrt {3}}{2}}}, \sqrt {\frac {-\frac {3}{2}+\frac {i \sqrt {3}}{2}}{-\frac {3}{2}-\frac {i \sqrt {3}}{2}}}\right )}{\sqrt {x^{3}+1}}-\frac {2 e \,\operatorname {arctanh}\left (\sqrt {x^{3}+1}\right )}{3}\) \(129\)
elliptic \(\frac {2 f \left (\frac {3}{2}-\frac {i \sqrt {3}}{2}\right ) \sqrt {\frac {x +1}{\frac {3}{2}-\frac {i \sqrt {3}}{2}}}\, \sqrt {\frac {x -\frac {1}{2}-\frac {i \sqrt {3}}{2}}{-\frac {3}{2}-\frac {i \sqrt {3}}{2}}}\, \sqrt {\frac {x -\frac {1}{2}+\frac {i \sqrt {3}}{2}}{-\frac {3}{2}+\frac {i \sqrt {3}}{2}}}\, F\left (\sqrt {\frac {x +1}{\frac {3}{2}-\frac {i \sqrt {3}}{2}}}, \sqrt {\frac {-\frac {3}{2}+\frac {i \sqrt {3}}{2}}{-\frac {3}{2}-\frac {i \sqrt {3}}{2}}}\right )}{\sqrt {x^{3}+1}}-\frac {2 e \,\operatorname {arctanh}\left (\sqrt {x^{3}+1}\right )}{3}\) \(129\)

[In]

int((f*x+e)/x/(x^3+1)^(1/2),x,method=_RETURNVERBOSE)

[Out]

f*x*hypergeom([1/3,1/2],[4/3],-x^3)+1/3*e/Pi^(1/2)*(-2*Pi^(1/2)*ln(1/2+1/2*(x^3+1)^(1/2))+(-2*ln(2)+3*ln(x))*P
i^(1/2))

Fricas [C] (verification not implemented)

Result contains higher order function than in optimal. Order 9 vs. order 4.

Time = 0.11 (sec) , antiderivative size = 30, normalized size of antiderivative = 0.25 \[ \int \frac {e+f x}{x \sqrt {1+x^3}} \, dx=\frac {1}{3} \, e \log \left (\frac {x^{3} - 2 \, \sqrt {x^{3} + 1} + 2}{x^{3}}\right ) + 2 \, f {\rm weierstrassPInverse}\left (0, -4, x\right ) \]

[In]

integrate((f*x+e)/x/(x^3+1)^(1/2),x, algorithm="fricas")

[Out]

1/3*e*log((x^3 - 2*sqrt(x^3 + 1) + 2)/x^3) + 2*f*weierstrassPInverse(0, -4, x)

Sympy [A] (verification not implemented)

Time = 1.26 (sec) , antiderivative size = 42, normalized size of antiderivative = 0.35 \[ \int \frac {e+f x}{x \sqrt {1+x^3}} \, dx=- \frac {2 e \operatorname {asinh}{\left (\frac {1}{x^{\frac {3}{2}}} \right )}}{3} + \frac {f x \Gamma \left (\frac {1}{3}\right ) {{}_{2}F_{1}\left (\begin {matrix} \frac {1}{3}, \frac {1}{2} \\ \frac {4}{3} \end {matrix}\middle | {x^{3} e^{i \pi }} \right )}}{3 \Gamma \left (\frac {4}{3}\right )} \]

[In]

integrate((f*x+e)/x/(x**3+1)**(1/2),x)

[Out]

-2*e*asinh(x**(-3/2))/3 + f*x*gamma(1/3)*hyper((1/3, 1/2), (4/3,), x**3*exp_polar(I*pi))/(3*gamma(4/3))

Maxima [F]

\[ \int \frac {e+f x}{x \sqrt {1+x^3}} \, dx=\int { \frac {f x + e}{\sqrt {x^{3} + 1} x} \,d x } \]

[In]

integrate((f*x+e)/x/(x^3+1)^(1/2),x, algorithm="maxima")

[Out]

integrate((f*x + e)/(sqrt(x^3 + 1)*x), x)

Giac [F]

\[ \int \frac {e+f x}{x \sqrt {1+x^3}} \, dx=\int { \frac {f x + e}{\sqrt {x^{3} + 1} x} \,d x } \]

[In]

integrate((f*x+e)/x/(x^3+1)^(1/2),x, algorithm="giac")

[Out]

integrate((f*x + e)/(sqrt(x^3 + 1)*x), x)

Mupad [B] (verification not implemented)

Time = 20.50 (sec) , antiderivative size = 207, normalized size of antiderivative = 1.72 \[ \int \frac {e+f x}{x \sqrt {1+x^3}} \, dx=\frac {\left (3+\sqrt {3}\,1{}\mathrm {i}\right )\,\sqrt {\frac {x-\frac {1}{2}+\frac {\sqrt {3}\,1{}\mathrm {i}}{2}}{-\frac {3}{2}+\frac {\sqrt {3}\,1{}\mathrm {i}}{2}}}\,\left (f\,\mathrm {F}\left (\mathrm {asin}\left (\sqrt {\frac {x+1}{\frac {3}{2}+\frac {\sqrt {3}\,1{}\mathrm {i}}{2}}}\right )\middle |-\frac {\frac {3}{2}+\frac {\sqrt {3}\,1{}\mathrm {i}}{2}}{-\frac {3}{2}+\frac {\sqrt {3}\,1{}\mathrm {i}}{2}}\right )-e\,\Pi \left (\frac {3}{2}+\frac {\sqrt {3}\,1{}\mathrm {i}}{2};\mathrm {asin}\left (\sqrt {\frac {x+1}{\frac {3}{2}+\frac {\sqrt {3}\,1{}\mathrm {i}}{2}}}\right )\middle |-\frac {\frac {3}{2}+\frac {\sqrt {3}\,1{}\mathrm {i}}{2}}{-\frac {3}{2}+\frac {\sqrt {3}\,1{}\mathrm {i}}{2}}\right )\right )\,\sqrt {\frac {x+1}{\frac {3}{2}+\frac {\sqrt {3}\,1{}\mathrm {i}}{2}}}\,\sqrt {\frac {\frac {1}{2}-x+\frac {\sqrt {3}\,1{}\mathrm {i}}{2}}{\frac {3}{2}+\frac {\sqrt {3}\,1{}\mathrm {i}}{2}}}}{\sqrt {x^3+\left (-\left (-\frac {1}{2}+\frac {\sqrt {3}\,1{}\mathrm {i}}{2}\right )\,\left (\frac {1}{2}+\frac {\sqrt {3}\,1{}\mathrm {i}}{2}\right )-1\right )\,x-\left (-\frac {1}{2}+\frac {\sqrt {3}\,1{}\mathrm {i}}{2}\right )\,\left (\frac {1}{2}+\frac {\sqrt {3}\,1{}\mathrm {i}}{2}\right )}} \]

[In]

int((e + f*x)/(x*(x^3 + 1)^(1/2)),x)

[Out]

((3^(1/2)*1i + 3)*((x + (3^(1/2)*1i)/2 - 1/2)/((3^(1/2)*1i)/2 - 3/2))^(1/2)*(f*ellipticF(asin(((x + 1)/((3^(1/
2)*1i)/2 + 3/2))^(1/2)), -((3^(1/2)*1i)/2 + 3/2)/((3^(1/2)*1i)/2 - 3/2)) - e*ellipticPi((3^(1/2)*1i)/2 + 3/2,
asin(((x + 1)/((3^(1/2)*1i)/2 + 3/2))^(1/2)), -((3^(1/2)*1i)/2 + 3/2)/((3^(1/2)*1i)/2 - 3/2)))*((x + 1)/((3^(1
/2)*1i)/2 + 3/2))^(1/2)*(((3^(1/2)*1i)/2 - x + 1/2)/((3^(1/2)*1i)/2 + 3/2))^(1/2))/(x^3 - x*(((3^(1/2)*1i)/2 -
 1/2)*((3^(1/2)*1i)/2 + 1/2) + 1) - ((3^(1/2)*1i)/2 - 1/2)*((3^(1/2)*1i)/2 + 1/2))^(1/2)