\(\int \frac {(e+f x)^n}{x^2 (a+b x^3)} \, dx\) [193]

   Optimal result
   Rubi [A] (verified)
   Mathematica [A] (verified)
   Maple [F]
   Fricas [F]
   Sympy [F(-1)]
   Maxima [F]
   Giac [F]
   Mupad [F(-1)]

Optimal result

Integrand size = 20, antiderivative size = 326 \[ \int \frac {(e+f x)^n}{x^2 \left (a+b x^3\right )} \, dx=-\frac {b^{2/3} (e+f x)^{1+n} \operatorname {Hypergeometric2F1}\left (1,1+n,2+n,\frac {\sqrt [3]{b} (e+f x)}{\sqrt [3]{b} e-\sqrt [3]{a} f}\right )}{3 a^{4/3} \left (\sqrt [3]{b} e-\sqrt [3]{a} f\right ) (1+n)}+\frac {\sqrt [3]{-1} b^{2/3} (e+f x)^{1+n} \operatorname {Hypergeometric2F1}\left (1,1+n,2+n,\frac {(-1)^{2/3} \sqrt [3]{b} (e+f x)}{(-1)^{2/3} \sqrt [3]{b} e-\sqrt [3]{a} f}\right )}{3 a^{4/3} \left ((-1)^{2/3} \sqrt [3]{b} e-\sqrt [3]{a} f\right ) (1+n)}+\frac {(-1)^{2/3} b^{2/3} (e+f x)^{1+n} \operatorname {Hypergeometric2F1}\left (1,1+n,2+n,\frac {\sqrt [3]{-1} \sqrt [3]{b} (e+f x)}{\sqrt [3]{-1} \sqrt [3]{b} e+\sqrt [3]{a} f}\right )}{3 a^{4/3} \left (\sqrt [3]{-1} \sqrt [3]{b} e+\sqrt [3]{a} f\right ) (1+n)}+\frac {f (e+f x)^{1+n} \operatorname {Hypergeometric2F1}\left (2,1+n,2+n,1+\frac {f x}{e}\right )}{a e^2 (1+n)} \]

[Out]

-1/3*b^(2/3)*(f*x+e)^(1+n)*hypergeom([1, 1+n],[2+n],b^(1/3)*(f*x+e)/(b^(1/3)*e-a^(1/3)*f))/a^(4/3)/(b^(1/3)*e-
a^(1/3)*f)/(1+n)+1/3*(-1)^(1/3)*b^(2/3)*(f*x+e)^(1+n)*hypergeom([1, 1+n],[2+n],(-1)^(2/3)*b^(1/3)*(f*x+e)/((-1
)^(2/3)*b^(1/3)*e-a^(1/3)*f))/a^(4/3)/((-1)^(2/3)*b^(1/3)*e-a^(1/3)*f)/(1+n)+1/3*(-1)^(2/3)*b^(2/3)*(f*x+e)^(1
+n)*hypergeom([1, 1+n],[2+n],(-1)^(1/3)*b^(1/3)*(f*x+e)/((-1)^(1/3)*b^(1/3)*e+a^(1/3)*f))/a^(4/3)/((-1)^(1/3)*
b^(1/3)*e+a^(1/3)*f)/(1+n)+f*(f*x+e)^(1+n)*hypergeom([2, 1+n],[2+n],1+f*x/e)/a/e^2/(1+n)

Rubi [A] (verified)

Time = 0.47 (sec) , antiderivative size = 326, normalized size of antiderivative = 1.00, number of steps used = 8, number of rules used = 3, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.150, Rules used = {6857, 67, 70} \[ \int \frac {(e+f x)^n}{x^2 \left (a+b x^3\right )} \, dx=-\frac {b^{2/3} (e+f x)^{n+1} \operatorname {Hypergeometric2F1}\left (1,n+1,n+2,\frac {\sqrt [3]{b} (e+f x)}{\sqrt [3]{b} e-\sqrt [3]{a} f}\right )}{3 a^{4/3} (n+1) \left (\sqrt [3]{b} e-\sqrt [3]{a} f\right )}+\frac {\sqrt [3]{-1} b^{2/3} (e+f x)^{n+1} \operatorname {Hypergeometric2F1}\left (1,n+1,n+2,\frac {(-1)^{2/3} \sqrt [3]{b} (e+f x)}{(-1)^{2/3} \sqrt [3]{b} e-\sqrt [3]{a} f}\right )}{3 a^{4/3} (n+1) \left ((-1)^{2/3} \sqrt [3]{b} e-\sqrt [3]{a} f\right )}+\frac {(-1)^{2/3} b^{2/3} (e+f x)^{n+1} \operatorname {Hypergeometric2F1}\left (1,n+1,n+2,\frac {\sqrt [3]{-1} \sqrt [3]{b} (e+f x)}{\sqrt [3]{-1} \sqrt [3]{b} e+\sqrt [3]{a} f}\right )}{3 a^{4/3} (n+1) \left (\sqrt [3]{a} f+\sqrt [3]{-1} \sqrt [3]{b} e\right )}+\frac {f (e+f x)^{n+1} \operatorname {Hypergeometric2F1}\left (2,n+1,n+2,\frac {f x}{e}+1\right )}{a e^2 (n+1)} \]

[In]

Int[(e + f*x)^n/(x^2*(a + b*x^3)),x]

[Out]

-1/3*(b^(2/3)*(e + f*x)^(1 + n)*Hypergeometric2F1[1, 1 + n, 2 + n, (b^(1/3)*(e + f*x))/(b^(1/3)*e - a^(1/3)*f)
])/(a^(4/3)*(b^(1/3)*e - a^(1/3)*f)*(1 + n)) + ((-1)^(1/3)*b^(2/3)*(e + f*x)^(1 + n)*Hypergeometric2F1[1, 1 +
n, 2 + n, ((-1)^(2/3)*b^(1/3)*(e + f*x))/((-1)^(2/3)*b^(1/3)*e - a^(1/3)*f)])/(3*a^(4/3)*((-1)^(2/3)*b^(1/3)*e
 - a^(1/3)*f)*(1 + n)) + ((-1)^(2/3)*b^(2/3)*(e + f*x)^(1 + n)*Hypergeometric2F1[1, 1 + n, 2 + n, ((-1)^(1/3)*
b^(1/3)*(e + f*x))/((-1)^(1/3)*b^(1/3)*e + a^(1/3)*f)])/(3*a^(4/3)*((-1)^(1/3)*b^(1/3)*e + a^(1/3)*f)*(1 + n))
 + (f*(e + f*x)^(1 + n)*Hypergeometric2F1[2, 1 + n, 2 + n, 1 + (f*x)/e])/(a*e^2*(1 + n))

Rule 67

Int[((b_.)*(x_))^(m_)*((c_) + (d_.)*(x_))^(n_), x_Symbol] :> Simp[((c + d*x)^(n + 1)/(d*(n + 1)*(-d/(b*c))^m))
*Hypergeometric2F1[-m, n + 1, n + 2, 1 + d*(x/c)], x] /; FreeQ[{b, c, d, m, n}, x] &&  !IntegerQ[n] && (Intege
rQ[m] || GtQ[-d/(b*c), 0])

Rule 70

Int[((a_) + (b_.)*(x_))^(m_)*((c_) + (d_.)*(x_))^(n_), x_Symbol] :> Simp[(b*c - a*d)^n*((a + b*x)^(m + 1)/(b^(
n + 1)*(m + 1)))*Hypergeometric2F1[-n, m + 1, m + 2, (-d)*((a + b*x)/(b*c - a*d))], x] /; FreeQ[{a, b, c, d, m
}, x] && NeQ[b*c - a*d, 0] &&  !IntegerQ[m] && IntegerQ[n]

Rule 6857

Int[(u_)/((a_) + (b_.)*(x_)^(n_)), x_Symbol] :> With[{v = RationalFunctionExpand[u/(a + b*x^n), x]}, Int[v, x]
 /; SumQ[v]] /; FreeQ[{a, b}, x] && IGtQ[n, 0]

Rubi steps \begin{align*} \text {integral}& = \int \left (\frac {(e+f x)^n}{a x^2}-\frac {b x (e+f x)^n}{a \left (a+b x^3\right )}\right ) \, dx \\ & = \frac {\int \frac {(e+f x)^n}{x^2} \, dx}{a}-\frac {b \int \frac {x (e+f x)^n}{a+b x^3} \, dx}{a} \\ & = \frac {f (e+f x)^{1+n} \, _2F_1\left (2,1+n;2+n;1+\frac {f x}{e}\right )}{a e^2 (1+n)}-\frac {b \int \left (-\frac {(e+f x)^n}{3 \sqrt [3]{a} \sqrt [3]{b} \left (\sqrt [3]{a}+\sqrt [3]{b} x\right )}-\frac {(-1)^{2/3} (e+f x)^n}{3 \sqrt [3]{a} \sqrt [3]{b} \left (\sqrt [3]{a}-\sqrt [3]{-1} \sqrt [3]{b} x\right )}+\frac {\sqrt [3]{-1} (e+f x)^n}{3 \sqrt [3]{a} \sqrt [3]{b} \left (\sqrt [3]{a}+(-1)^{2/3} \sqrt [3]{b} x\right )}\right ) \, dx}{a} \\ & = \frac {f (e+f x)^{1+n} \, _2F_1\left (2,1+n;2+n;1+\frac {f x}{e}\right )}{a e^2 (1+n)}+\frac {b^{2/3} \int \frac {(e+f x)^n}{\sqrt [3]{a}+\sqrt [3]{b} x} \, dx}{3 a^{4/3}}-\frac {\left (\sqrt [3]{-1} b^{2/3}\right ) \int \frac {(e+f x)^n}{\sqrt [3]{a}+(-1)^{2/3} \sqrt [3]{b} x} \, dx}{3 a^{4/3}}+\frac {\left ((-1)^{2/3} b^{2/3}\right ) \int \frac {(e+f x)^n}{\sqrt [3]{a}-\sqrt [3]{-1} \sqrt [3]{b} x} \, dx}{3 a^{4/3}} \\ & = -\frac {b^{2/3} (e+f x)^{1+n} \, _2F_1\left (1,1+n;2+n;\frac {\sqrt [3]{b} (e+f x)}{\sqrt [3]{b} e-\sqrt [3]{a} f}\right )}{3 a^{4/3} \left (\sqrt [3]{b} e-\sqrt [3]{a} f\right ) (1+n)}+\frac {\sqrt [3]{-1} b^{2/3} (e+f x)^{1+n} \, _2F_1\left (1,1+n;2+n;\frac {(-1)^{2/3} \sqrt [3]{b} (e+f x)}{(-1)^{2/3} \sqrt [3]{b} e-\sqrt [3]{a} f}\right )}{3 a^{4/3} \left ((-1)^{2/3} \sqrt [3]{b} e-\sqrt [3]{a} f\right ) (1+n)}+\frac {(-1)^{2/3} b^{2/3} (e+f x)^{1+n} \, _2F_1\left (1,1+n;2+n;\frac {\sqrt [3]{-1} \sqrt [3]{b} (e+f x)}{\sqrt [3]{-1} \sqrt [3]{b} e+\sqrt [3]{a} f}\right )}{3 a^{4/3} \left (\sqrt [3]{-1} \sqrt [3]{b} e+\sqrt [3]{a} f\right ) (1+n)}+\frac {f (e+f x)^{1+n} \, _2F_1\left (2,1+n;2+n;1+\frac {f x}{e}\right )}{a e^2 (1+n)} \\ \end{align*}

Mathematica [A] (verified)

Time = 0.34 (sec) , antiderivative size = 273, normalized size of antiderivative = 0.84 \[ \int \frac {(e+f x)^n}{x^2 \left (a+b x^3\right )} \, dx=\frac {(e+f x)^{1+n} \left (-\frac {b^{2/3} \operatorname {Hypergeometric2F1}\left (1,1+n,2+n,\frac {\sqrt [3]{b} (e+f x)}{\sqrt [3]{b} e-\sqrt [3]{a} f}\right )}{\sqrt [3]{b} e-\sqrt [3]{a} f}+\frac {\sqrt [3]{-1} b^{2/3} \operatorname {Hypergeometric2F1}\left (1,1+n,2+n,\frac {(-1)^{2/3} \sqrt [3]{b} (e+f x)}{(-1)^{2/3} \sqrt [3]{b} e-\sqrt [3]{a} f}\right )}{(-1)^{2/3} \sqrt [3]{b} e-\sqrt [3]{a} f}+\frac {(-1)^{2/3} b^{2/3} \operatorname {Hypergeometric2F1}\left (1,1+n,2+n,\frac {\sqrt [3]{-1} \sqrt [3]{b} (e+f x)}{\sqrt [3]{-1} \sqrt [3]{b} e+\sqrt [3]{a} f}\right )}{\sqrt [3]{-1} \sqrt [3]{b} e+\sqrt [3]{a} f}+\frac {3 \sqrt [3]{a} f \operatorname {Hypergeometric2F1}\left (2,1+n,2+n,1+\frac {f x}{e}\right )}{e^2}\right )}{3 a^{4/3} (1+n)} \]

[In]

Integrate[(e + f*x)^n/(x^2*(a + b*x^3)),x]

[Out]

((e + f*x)^(1 + n)*(-((b^(2/3)*Hypergeometric2F1[1, 1 + n, 2 + n, (b^(1/3)*(e + f*x))/(b^(1/3)*e - a^(1/3)*f)]
)/(b^(1/3)*e - a^(1/3)*f)) + ((-1)^(1/3)*b^(2/3)*Hypergeometric2F1[1, 1 + n, 2 + n, ((-1)^(2/3)*b^(1/3)*(e + f
*x))/((-1)^(2/3)*b^(1/3)*e - a^(1/3)*f)])/((-1)^(2/3)*b^(1/3)*e - a^(1/3)*f) + ((-1)^(2/3)*b^(2/3)*Hypergeomet
ric2F1[1, 1 + n, 2 + n, ((-1)^(1/3)*b^(1/3)*(e + f*x))/((-1)^(1/3)*b^(1/3)*e + a^(1/3)*f)])/((-1)^(1/3)*b^(1/3
)*e + a^(1/3)*f) + (3*a^(1/3)*f*Hypergeometric2F1[2, 1 + n, 2 + n, 1 + (f*x)/e])/e^2))/(3*a^(4/3)*(1 + n))

Maple [F]

\[\int \frac {\left (f x +e \right )^{n}}{x^{2} \left (b \,x^{3}+a \right )}d x\]

[In]

int((f*x+e)^n/x^2/(b*x^3+a),x)

[Out]

int((f*x+e)^n/x^2/(b*x^3+a),x)

Fricas [F]

\[ \int \frac {(e+f x)^n}{x^2 \left (a+b x^3\right )} \, dx=\int { \frac {{\left (f x + e\right )}^{n}}{{\left (b x^{3} + a\right )} x^{2}} \,d x } \]

[In]

integrate((f*x+e)^n/x^2/(b*x^3+a),x, algorithm="fricas")

[Out]

integral((f*x + e)^n/(b*x^5 + a*x^2), x)

Sympy [F(-1)]

Timed out. \[ \int \frac {(e+f x)^n}{x^2 \left (a+b x^3\right )} \, dx=\text {Timed out} \]

[In]

integrate((f*x+e)**n/x**2/(b*x**3+a),x)

[Out]

Timed out

Maxima [F]

\[ \int \frac {(e+f x)^n}{x^2 \left (a+b x^3\right )} \, dx=\int { \frac {{\left (f x + e\right )}^{n}}{{\left (b x^{3} + a\right )} x^{2}} \,d x } \]

[In]

integrate((f*x+e)^n/x^2/(b*x^3+a),x, algorithm="maxima")

[Out]

integrate((f*x + e)^n/((b*x^3 + a)*x^2), x)

Giac [F]

\[ \int \frac {(e+f x)^n}{x^2 \left (a+b x^3\right )} \, dx=\int { \frac {{\left (f x + e\right )}^{n}}{{\left (b x^{3} + a\right )} x^{2}} \,d x } \]

[In]

integrate((f*x+e)^n/x^2/(b*x^3+a),x, algorithm="giac")

[Out]

integrate((f*x + e)^n/((b*x^3 + a)*x^2), x)

Mupad [F(-1)]

Timed out. \[ \int \frac {(e+f x)^n}{x^2 \left (a+b x^3\right )} \, dx=\int \frac {{\left (e+f\,x\right )}^n}{x^2\,\left (b\,x^3+a\right )} \,d x \]

[In]

int((e + f*x)^n/(x^2*(a + b*x^3)),x)

[Out]

int((e + f*x)^n/(x^2*(a + b*x^3)), x)