\(\int x^2 \sqrt {\frac {e (a+b x^2)}{c+d x^2}} \, dx\) [271]

   Optimal result
   Rubi [A] (verified)
   Mathematica [C] (verified)
   Maple [A] (verified)
   Fricas [A] (verification not implemented)
   Sympy [F(-1)]
   Maxima [F]
   Giac [F]
   Mupad [F(-1)]

Optimal result

Integrand size = 26, antiderivative size = 266 \[ \int x^2 \sqrt {\frac {e \left (a+b x^2\right )}{c+d x^2}} \, dx=-\frac {(2 b c-a d) x \sqrt {\frac {e \left (a+b x^2\right )}{c+d x^2}}}{3 b d}+\frac {x \sqrt {\frac {e \left (a+b x^2\right )}{c+d x^2}} \left (c+d x^2\right )}{3 d}+\frac {\sqrt {c} (2 b c-a d) \sqrt {\frac {e \left (a+b x^2\right )}{c+d x^2}} E\left (\arctan \left (\frac {\sqrt {d} x}{\sqrt {c}}\right )|1-\frac {b c}{a d}\right )}{3 b d^{3/2} \sqrt {\frac {c \left (a+b x^2\right )}{a \left (c+d x^2\right )}}}-\frac {c^{3/2} \sqrt {\frac {e \left (a+b x^2\right )}{c+d x^2}} \operatorname {EllipticF}\left (\arctan \left (\frac {\sqrt {d} x}{\sqrt {c}}\right ),1-\frac {b c}{a d}\right )}{3 d^{3/2} \sqrt {\frac {c \left (a+b x^2\right )}{a \left (c+d x^2\right )}}} \]

[Out]

-1/3*(-a*d+2*b*c)*x*(e*(b*x^2+a)/(d*x^2+c))^(1/2)/b/d+1/3*x*(d*x^2+c)*(e*(b*x^2+a)/(d*x^2+c))^(1/2)/d-1/3*c^(3
/2)*(1/(1+d*x^2/c))^(1/2)*(1+d*x^2/c)^(1/2)*EllipticF(x*d^(1/2)/c^(1/2)/(1+d*x^2/c)^(1/2),(1-b*c/a/d)^(1/2))*(
e*(b*x^2+a)/(d*x^2+c))^(1/2)/d^(3/2)/(c*(b*x^2+a)/a/(d*x^2+c))^(1/2)+1/3*(-a*d+2*b*c)*(1/(1+d*x^2/c))^(1/2)*(1
+d*x^2/c)^(1/2)*EllipticE(x*d^(1/2)/c^(1/2)/(1+d*x^2/c)^(1/2),(1-b*c/a/d)^(1/2))*c^(1/2)*(e*(b*x^2+a)/(d*x^2+c
))^(1/2)/b/d^(3/2)/(c*(b*x^2+a)/a/(d*x^2+c))^(1/2)

Rubi [A] (verified)

Time = 0.15 (sec) , antiderivative size = 266, normalized size of antiderivative = 1.00, number of steps used = 6, number of rules used = 6, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.231, Rules used = {1986, 489, 545, 429, 506, 422} \[ \int x^2 \sqrt {\frac {e \left (a+b x^2\right )}{c+d x^2}} \, dx=-\frac {c^{3/2} \sqrt {\frac {e \left (a+b x^2\right )}{c+d x^2}} \operatorname {EllipticF}\left (\arctan \left (\frac {\sqrt {d} x}{\sqrt {c}}\right ),1-\frac {b c}{a d}\right )}{3 d^{3/2} \sqrt {\frac {c \left (a+b x^2\right )}{a \left (c+d x^2\right )}}}+\frac {\sqrt {c} (2 b c-a d) \sqrt {\frac {e \left (a+b x^2\right )}{c+d x^2}} E\left (\arctan \left (\frac {\sqrt {d} x}{\sqrt {c}}\right )|1-\frac {b c}{a d}\right )}{3 b d^{3/2} \sqrt {\frac {c \left (a+b x^2\right )}{a \left (c+d x^2\right )}}}+\frac {x \left (c+d x^2\right ) \sqrt {\frac {e \left (a+b x^2\right )}{c+d x^2}}}{3 d}-\frac {x (2 b c-a d) \sqrt {\frac {e \left (a+b x^2\right )}{c+d x^2}}}{3 b d} \]

[In]

Int[x^2*Sqrt[(e*(a + b*x^2))/(c + d*x^2)],x]

[Out]

-1/3*((2*b*c - a*d)*x*Sqrt[(e*(a + b*x^2))/(c + d*x^2)])/(b*d) + (x*Sqrt[(e*(a + b*x^2))/(c + d*x^2)]*(c + d*x
^2))/(3*d) + (Sqrt[c]*(2*b*c - a*d)*Sqrt[(e*(a + b*x^2))/(c + d*x^2)]*EllipticE[ArcTan[(Sqrt[d]*x)/Sqrt[c]], 1
 - (b*c)/(a*d)])/(3*b*d^(3/2)*Sqrt[(c*(a + b*x^2))/(a*(c + d*x^2))]) - (c^(3/2)*Sqrt[(e*(a + b*x^2))/(c + d*x^
2)]*EllipticF[ArcTan[(Sqrt[d]*x)/Sqrt[c]], 1 - (b*c)/(a*d)])/(3*d^(3/2)*Sqrt[(c*(a + b*x^2))/(a*(c + d*x^2))])

Rule 422

Int[Sqrt[(a_) + (b_.)*(x_)^2]/((c_) + (d_.)*(x_)^2)^(3/2), x_Symbol] :> Simp[(Sqrt[a + b*x^2]/(c*Rt[d/c, 2]*Sq
rt[c + d*x^2]*Sqrt[c*((a + b*x^2)/(a*(c + d*x^2)))]))*EllipticE[ArcTan[Rt[d/c, 2]*x], 1 - b*(c/(a*d))], x] /;
FreeQ[{a, b, c, d}, x] && PosQ[b/a] && PosQ[d/c]

Rule 429

Int[1/(Sqrt[(a_) + (b_.)*(x_)^2]*Sqrt[(c_) + (d_.)*(x_)^2]), x_Symbol] :> Simp[(Sqrt[a + b*x^2]/(a*Rt[d/c, 2]*
Sqrt[c + d*x^2]*Sqrt[c*((a + b*x^2)/(a*(c + d*x^2)))]))*EllipticF[ArcTan[Rt[d/c, 2]*x], 1 - b*(c/(a*d))], x] /
; FreeQ[{a, b, c, d}, x] && PosQ[d/c] && PosQ[b/a] &&  !SimplerSqrtQ[b/a, d/c]

Rule 489

Int[((e_.)*(x_))^(m_.)*((a_) + (b_.)*(x_)^(n_))^(p_)*((c_) + (d_.)*(x_)^(n_))^(q_), x_Symbol] :> Simp[e^(n - 1
)*(e*x)^(m - n + 1)*(a + b*x^n)^(p + 1)*((c + d*x^n)^q/(b*(m + n*(p + q) + 1))), x] - Dist[e^n/(b*(m + n*(p +
q) + 1)), Int[(e*x)^(m - n)*(a + b*x^n)^p*(c + d*x^n)^(q - 1)*Simp[a*c*(m - n + 1) + (a*d*(m - n + 1) - n*q*(b
*c - a*d))*x^n, x], x], x] /; FreeQ[{a, b, c, d, e, p}, x] && NeQ[b*c - a*d, 0] && IGtQ[n, 0] && GtQ[q, 0] &&
GtQ[m - n + 1, 0] && IntBinomialQ[a, b, c, d, e, m, n, p, q, x]

Rule 506

Int[(x_)^2/(Sqrt[(a_) + (b_.)*(x_)^2]*Sqrt[(c_) + (d_.)*(x_)^2]), x_Symbol] :> Simp[x*(Sqrt[a + b*x^2]/(b*Sqrt
[c + d*x^2])), x] - Dist[c/b, Int[Sqrt[a + b*x^2]/(c + d*x^2)^(3/2), x], x] /; FreeQ[{a, b, c, d}, x] && NeQ[b
*c - a*d, 0] && PosQ[b/a] && PosQ[d/c] &&  !SimplerSqrtQ[b/a, d/c]

Rule 545

Int[((a_) + (b_.)*(x_)^(n_))^(p_.)*((c_) + (d_.)*(x_)^(n_))^(q_.)*((e_) + (f_.)*(x_)^(n_)), x_Symbol] :> Dist[
e, Int[(a + b*x^n)^p*(c + d*x^n)^q, x], x] + Dist[f, Int[x^n*(a + b*x^n)^p*(c + d*x^n)^q, x], x] /; FreeQ[{a,
b, c, d, e, f, n, p, q}, x]

Rule 1986

Int[(u_.)*((e_.)*((a_.) + (b_.)*(x_)^(n_.))^(q_.)*((c_) + (d_.)*(x_)^(n_))^(r_.))^(p_), x_Symbol] :> Dist[Simp
[(e*(a + b*x^n)^q*(c + d*x^n)^r)^p/((a + b*x^n)^(p*q)*(c + d*x^n)^(p*r))], Int[u*(a + b*x^n)^(p*q)*(c + d*x^n)
^(p*r), x], x] /; FreeQ[{a, b, c, d, e, n, p, q, r}, x]

Rubi steps \begin{align*} \text {integral}& = \frac {\left (\sqrt {\frac {e \left (a+b x^2\right )}{c+d x^2}} \sqrt {c+d x^2}\right ) \int \frac {x^2 \sqrt {a+b x^2}}{\sqrt {c+d x^2}} \, dx}{\sqrt {a+b x^2}} \\ & = \frac {x \sqrt {\frac {e \left (a+b x^2\right )}{c+d x^2}} \left (c+d x^2\right )}{3 d}-\frac {\left (\sqrt {\frac {e \left (a+b x^2\right )}{c+d x^2}} \sqrt {c+d x^2}\right ) \int \frac {a c+(2 b c-a d) x^2}{\sqrt {a+b x^2} \sqrt {c+d x^2}} \, dx}{3 d \sqrt {a+b x^2}} \\ & = \frac {x \sqrt {\frac {e \left (a+b x^2\right )}{c+d x^2}} \left (c+d x^2\right )}{3 d}-\frac {\left (a c \sqrt {\frac {e \left (a+b x^2\right )}{c+d x^2}} \sqrt {c+d x^2}\right ) \int \frac {1}{\sqrt {a+b x^2} \sqrt {c+d x^2}} \, dx}{3 d \sqrt {a+b x^2}}-\frac {\left ((2 b c-a d) \sqrt {\frac {e \left (a+b x^2\right )}{c+d x^2}} \sqrt {c+d x^2}\right ) \int \frac {x^2}{\sqrt {a+b x^2} \sqrt {c+d x^2}} \, dx}{3 d \sqrt {a+b x^2}} \\ & = -\frac {(2 b c-a d) x \sqrt {\frac {e \left (a+b x^2\right )}{c+d x^2}}}{3 b d}+\frac {x \sqrt {\frac {e \left (a+b x^2\right )}{c+d x^2}} \left (c+d x^2\right )}{3 d}-\frac {c^{3/2} \sqrt {\frac {e \left (a+b x^2\right )}{c+d x^2}} F\left (\tan ^{-1}\left (\frac {\sqrt {d} x}{\sqrt {c}}\right )|1-\frac {b c}{a d}\right )}{3 d^{3/2} \sqrt {\frac {c \left (a+b x^2\right )}{a \left (c+d x^2\right )}}}+\frac {\left (c (2 b c-a d) \sqrt {\frac {e \left (a+b x^2\right )}{c+d x^2}} \sqrt {c+d x^2}\right ) \int \frac {\sqrt {a+b x^2}}{\left (c+d x^2\right )^{3/2}} \, dx}{3 b d \sqrt {a+b x^2}} \\ & = -\frac {(2 b c-a d) x \sqrt {\frac {e \left (a+b x^2\right )}{c+d x^2}}}{3 b d}+\frac {x \sqrt {\frac {e \left (a+b x^2\right )}{c+d x^2}} \left (c+d x^2\right )}{3 d}+\frac {\sqrt {c} (2 b c-a d) \sqrt {\frac {e \left (a+b x^2\right )}{c+d x^2}} E\left (\tan ^{-1}\left (\frac {\sqrt {d} x}{\sqrt {c}}\right )|1-\frac {b c}{a d}\right )}{3 b d^{3/2} \sqrt {\frac {c \left (a+b x^2\right )}{a \left (c+d x^2\right )}}}-\frac {c^{3/2} \sqrt {\frac {e \left (a+b x^2\right )}{c+d x^2}} F\left (\tan ^{-1}\left (\frac {\sqrt {d} x}{\sqrt {c}}\right )|1-\frac {b c}{a d}\right )}{3 d^{3/2} \sqrt {\frac {c \left (a+b x^2\right )}{a \left (c+d x^2\right )}}} \\ \end{align*}

Mathematica [C] (verified)

Result contains complex when optimal does not.

Time = 1.22 (sec) , antiderivative size = 208, normalized size of antiderivative = 0.78 \[ \int x^2 \sqrt {\frac {e \left (a+b x^2\right )}{c+d x^2}} \, dx=\frac {\sqrt {\frac {e \left (a+b x^2\right )}{c+d x^2}} \left (\sqrt {\frac {b}{a}} d x \left (a+b x^2\right ) \left (c+d x^2\right )-i c (-2 b c+a d) \sqrt {1+\frac {b x^2}{a}} \sqrt {1+\frac {d x^2}{c}} E\left (i \text {arcsinh}\left (\sqrt {\frac {b}{a}} x\right )|\frac {a d}{b c}\right )+2 i c (-b c+a d) \sqrt {1+\frac {b x^2}{a}} \sqrt {1+\frac {d x^2}{c}} \operatorname {EllipticF}\left (i \text {arcsinh}\left (\sqrt {\frac {b}{a}} x\right ),\frac {a d}{b c}\right )\right )}{3 \sqrt {\frac {b}{a}} d^2 \left (a+b x^2\right )} \]

[In]

Integrate[x^2*Sqrt[(e*(a + b*x^2))/(c + d*x^2)],x]

[Out]

(Sqrt[(e*(a + b*x^2))/(c + d*x^2)]*(Sqrt[b/a]*d*x*(a + b*x^2)*(c + d*x^2) - I*c*(-2*b*c + a*d)*Sqrt[1 + (b*x^2
)/a]*Sqrt[1 + (d*x^2)/c]*EllipticE[I*ArcSinh[Sqrt[b/a]*x], (a*d)/(b*c)] + (2*I)*c*(-(b*c) + a*d)*Sqrt[1 + (b*x
^2)/a]*Sqrt[1 + (d*x^2)/c]*EllipticF[I*ArcSinh[Sqrt[b/a]*x], (a*d)/(b*c)]))/(3*Sqrt[b/a]*d^2*(a + b*x^2))

Maple [A] (verified)

Time = 4.72 (sec) , antiderivative size = 350, normalized size of antiderivative = 1.32

method result size
risch \(\frac {x \left (d \,x^{2}+c \right ) \sqrt {\frac {e \left (b \,x^{2}+a \right )}{d \,x^{2}+c}}}{3 d}-\frac {\left (\frac {a c \sqrt {1+\frac {b \,x^{2}}{a}}\, \sqrt {1+\frac {d \,x^{2}}{c}}\, F\left (x \sqrt {-\frac {b}{a}}, \sqrt {-1+\frac {e d a +e b c}{c b e}}\right )}{\sqrt {-\frac {b}{a}}\, \sqrt {b d e \,x^{4}+a d e \,x^{2}+b c e \,x^{2}+a c e}}+\frac {2 \left (a d -2 b c \right ) a c e \sqrt {1+\frac {b \,x^{2}}{a}}\, \sqrt {1+\frac {d \,x^{2}}{c}}\, \left (F\left (x \sqrt {-\frac {b}{a}}, \sqrt {-1+\frac {e d a +e b c}{c b e}}\right )-E\left (x \sqrt {-\frac {b}{a}}, \sqrt {-1+\frac {e d a +e b c}{c b e}}\right )\right )}{\sqrt {-\frac {b}{a}}\, \sqrt {b d e \,x^{4}+a d e \,x^{2}+b c e \,x^{2}+a c e}\, \left (e d a +e b c +e \left (a d -b c \right )\right )}\right ) \sqrt {\frac {e \left (b \,x^{2}+a \right )}{d \,x^{2}+c}}\, \sqrt {\left (d \,x^{2}+c \right ) e \left (b \,x^{2}+a \right )}}{3 d \left (b \,x^{2}+a \right )}\) \(350\)
default \(\frac {\sqrt {\frac {e \left (b \,x^{2}+a \right )}{d \,x^{2}+c}}\, \left (d \,x^{2}+c \right ) \left (\sqrt {-\frac {b}{a}}\, b \,d^{2} x^{5}+\sqrt {-\frac {b}{a}}\, a \,d^{2} x^{3}+\sqrt {-\frac {b}{a}}\, b c d \,x^{3}-2 a c \sqrt {\frac {b \,x^{2}+a}{a}}\, \sqrt {\frac {d \,x^{2}+c}{c}}\, F\left (x \sqrt {-\frac {b}{a}}, \sqrt {\frac {a d}{b c}}\right ) d +2 \sqrt {\frac {b \,x^{2}+a}{a}}\, \sqrt {\frac {d \,x^{2}+c}{c}}\, F\left (x \sqrt {-\frac {b}{a}}, \sqrt {\frac {a d}{b c}}\right ) b \,c^{2}+\sqrt {\frac {b \,x^{2}+a}{a}}\, \sqrt {\frac {d \,x^{2}+c}{c}}\, E\left (x \sqrt {-\frac {b}{a}}, \sqrt {\frac {a d}{b c}}\right ) a c d -2 \sqrt {\frac {b \,x^{2}+a}{a}}\, \sqrt {\frac {d \,x^{2}+c}{c}}\, E\left (x \sqrt {-\frac {b}{a}}, \sqrt {\frac {a d}{b c}}\right ) b \,c^{2}+\sqrt {-\frac {b}{a}}\, a c d x \right )}{3 \sqrt {\left (d \,x^{2}+c \right ) \left (b \,x^{2}+a \right )}\, d^{2} \sqrt {-\frac {b}{a}}\, \sqrt {b d \,x^{4}+a d \,x^{2}+b c \,x^{2}+a c}}\) \(356\)

[In]

int(x^2*(e*(b*x^2+a)/(d*x^2+c))^(1/2),x,method=_RETURNVERBOSE)

[Out]

1/3*x*(d*x^2+c)*(e*(b*x^2+a)/(d*x^2+c))^(1/2)/d-1/3/d*(a*c/(-b/a)^(1/2)*(1+b*x^2/a)^(1/2)*(1+1/c*d*x^2)^(1/2)/
(b*d*e*x^4+a*d*e*x^2+b*c*e*x^2+a*c*e)^(1/2)*EllipticF(x*(-b/a)^(1/2),(-1+(a*d*e+b*c*e)/c/b/e)^(1/2))+2*(a*d-2*
b*c)*a*c*e/(-b/a)^(1/2)*(1+b*x^2/a)^(1/2)*(1+1/c*d*x^2)^(1/2)/(b*d*e*x^4+a*d*e*x^2+b*c*e*x^2+a*c*e)^(1/2)/(e*d
*a+e*b*c+e*(a*d-b*c))*(EllipticF(x*(-b/a)^(1/2),(-1+(a*d*e+b*c*e)/c/b/e)^(1/2))-EllipticE(x*(-b/a)^(1/2),(-1+(
a*d*e+b*c*e)/c/b/e)^(1/2))))*(e*(b*x^2+a)/(d*x^2+c))^(1/2)*((d*x^2+c)*e*(b*x^2+a))^(1/2)/(b*x^2+a)

Fricas [A] (verification not implemented)

none

Time = 0.11 (sec) , antiderivative size = 182, normalized size of antiderivative = 0.68 \[ \int x^2 \sqrt {\frac {e \left (a+b x^2\right )}{c+d x^2}} \, dx=\frac {{\left (2 \, b c^{2} - a c d\right )} \sqrt {\frac {b e}{d}} x \sqrt {-\frac {c}{d}} E(\arcsin \left (\frac {\sqrt {-\frac {c}{d}}}{x}\right )\,|\,\frac {a d}{b c}) - {\left (2 \, b c^{2} - a c d + a d^{2}\right )} \sqrt {\frac {b e}{d}} x \sqrt {-\frac {c}{d}} F(\arcsin \left (\frac {\sqrt {-\frac {c}{d}}}{x}\right )\,|\,\frac {a d}{b c}) + {\left (b d^{2} x^{4} - 2 \, b c^{2} + a c d - {\left (b c d - a d^{2}\right )} x^{2}\right )} \sqrt {\frac {b e x^{2} + a e}{d x^{2} + c}}}{3 \, b d^{2} x} \]

[In]

integrate(x^2*(e*(b*x^2+a)/(d*x^2+c))^(1/2),x, algorithm="fricas")

[Out]

1/3*((2*b*c^2 - a*c*d)*sqrt(b*e/d)*x*sqrt(-c/d)*elliptic_e(arcsin(sqrt(-c/d)/x), a*d/(b*c)) - (2*b*c^2 - a*c*d
 + a*d^2)*sqrt(b*e/d)*x*sqrt(-c/d)*elliptic_f(arcsin(sqrt(-c/d)/x), a*d/(b*c)) + (b*d^2*x^4 - 2*b*c^2 + a*c*d
- (b*c*d - a*d^2)*x^2)*sqrt((b*e*x^2 + a*e)/(d*x^2 + c)))/(b*d^2*x)

Sympy [F(-1)]

Timed out. \[ \int x^2 \sqrt {\frac {e \left (a+b x^2\right )}{c+d x^2}} \, dx=\text {Timed out} \]

[In]

integrate(x**2*(e*(b*x**2+a)/(d*x**2+c))**(1/2),x)

[Out]

Timed out

Maxima [F]

\[ \int x^2 \sqrt {\frac {e \left (a+b x^2\right )}{c+d x^2}} \, dx=\int { \sqrt {\frac {{\left (b x^{2} + a\right )} e}{d x^{2} + c}} x^{2} \,d x } \]

[In]

integrate(x^2*(e*(b*x^2+a)/(d*x^2+c))^(1/2),x, algorithm="maxima")

[Out]

integrate(sqrt((b*x^2 + a)*e/(d*x^2 + c))*x^2, x)

Giac [F]

\[ \int x^2 \sqrt {\frac {e \left (a+b x^2\right )}{c+d x^2}} \, dx=\int { \sqrt {\frac {{\left (b x^{2} + a\right )} e}{d x^{2} + c}} x^{2} \,d x } \]

[In]

integrate(x^2*(e*(b*x^2+a)/(d*x^2+c))^(1/2),x, algorithm="giac")

[Out]

integrate(sqrt((b*x^2 + a)*e/(d*x^2 + c))*x^2, x)

Mupad [F(-1)]

Timed out. \[ \int x^2 \sqrt {\frac {e \left (a+b x^2\right )}{c+d x^2}} \, dx=\int x^2\,\sqrt {\frac {e\,\left (b\,x^2+a\right )}{d\,x^2+c}} \,d x \]

[In]

int(x^2*((e*(a + b*x^2))/(c + d*x^2))^(1/2),x)

[Out]

int(x^2*((e*(a + b*x^2))/(c + d*x^2))^(1/2), x)