\(\int \frac {1}{x^3 (\frac {e (a+b x^2)}{c+d x^2})^{3/2}} \, dx\) [311]

   Optimal result
   Rubi [A] (verified)
   Mathematica [A] (verified)
   Maple [A] (verified)
   Fricas [A] (verification not implemented)
   Sympy [F(-1)]
   Maxima [F(-2)]
   Giac [F(-2)]
   Mupad [F(-1)]

Optimal result

Integrand size = 26, antiderivative size = 170 \[ \int \frac {1}{x^3 \left (\frac {e \left (a+b x^2\right )}{c+d x^2}\right )^{3/2}} \, dx=-\frac {3 (b c-a d)}{2 a^2 e \sqrt {\frac {e \left (a+b x^2\right )}{c+d x^2}}}+\frac {b c-a d}{2 a \sqrt {\frac {e \left (a+b x^2\right )}{c+d x^2}} \left (a e-\frac {c e \left (a+b x^2\right )}{c+d x^2}\right )}+\frac {3 \sqrt {c} (b c-a d) \text {arctanh}\left (\frac {\sqrt {c} \sqrt {\frac {e \left (a+b x^2\right )}{c+d x^2}}}{\sqrt {a} \sqrt {e}}\right )}{2 a^{5/2} e^{3/2}} \]

[Out]

3/2*(-a*d+b*c)*arctanh(c^(1/2)*(e*(b*x^2+a)/(d*x^2+c))^(1/2)/a^(1/2)/e^(1/2))*c^(1/2)/a^(5/2)/e^(3/2)-3/2*(-a*
d+b*c)/a^2/e/(e*(b*x^2+a)/(d*x^2+c))^(1/2)+1/2*(-a*d+b*c)/a/(a*e-c*e*(b*x^2+a)/(d*x^2+c))/(e*(b*x^2+a)/(d*x^2+
c))^(1/2)

Rubi [A] (verified)

Time = 0.14 (sec) , antiderivative size = 170, normalized size of antiderivative = 1.00, number of steps used = 5, number of rules used = 5, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.192, Rules used = {1981, 1980, 296, 331, 214} \[ \int \frac {1}{x^3 \left (\frac {e \left (a+b x^2\right )}{c+d x^2}\right )^{3/2}} \, dx=\frac {3 \sqrt {c} (b c-a d) \text {arctanh}\left (\frac {\sqrt {c} \sqrt {\frac {e \left (a+b x^2\right )}{c+d x^2}}}{\sqrt {a} \sqrt {e}}\right )}{2 a^{5/2} e^{3/2}}-\frac {3 (b c-a d)}{2 a^2 e \sqrt {\frac {e \left (a+b x^2\right )}{c+d x^2}}}+\frac {b c-a d}{2 a \sqrt {\frac {e \left (a+b x^2\right )}{c+d x^2}} \left (a e-\frac {c e \left (a+b x^2\right )}{c+d x^2}\right )} \]

[In]

Int[1/(x^3*((e*(a + b*x^2))/(c + d*x^2))^(3/2)),x]

[Out]

(-3*(b*c - a*d))/(2*a^2*e*Sqrt[(e*(a + b*x^2))/(c + d*x^2)]) + (b*c - a*d)/(2*a*Sqrt[(e*(a + b*x^2))/(c + d*x^
2)]*(a*e - (c*e*(a + b*x^2))/(c + d*x^2))) + (3*Sqrt[c]*(b*c - a*d)*ArcTanh[(Sqrt[c]*Sqrt[(e*(a + b*x^2))/(c +
 d*x^2)])/(Sqrt[a]*Sqrt[e])])/(2*a^(5/2)*e^(3/2))

Rule 214

Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> Simp[(Rt[-a/b, 2]/a)*ArcTanh[x/Rt[-a/b, 2]], x] /; FreeQ[{a, b},
x] && NegQ[a/b]

Rule 296

Int[((c_.)*(x_))^(m_.)*((a_) + (b_.)*(x_)^(n_))^(p_), x_Symbol] :> Simp[(-(c*x)^(m + 1))*((a + b*x^n)^(p + 1)/
(a*c*n*(p + 1))), x] + Dist[(m + n*(p + 1) + 1)/(a*n*(p + 1)), Int[(c*x)^m*(a + b*x^n)^(p + 1), x], x] /; Free
Q[{a, b, c, m}, x] && IGtQ[n, 0] && LtQ[p, -1] && IntBinomialQ[a, b, c, n, m, p, x]

Rule 331

Int[((c_.)*(x_))^(m_)*((a_) + (b_.)*(x_)^(n_))^(p_), x_Symbol] :> Simp[(c*x)^(m + 1)*((a + b*x^n)^(p + 1)/(a*c
*(m + 1))), x] - Dist[b*((m + n*(p + 1) + 1)/(a*c^n*(m + 1))), Int[(c*x)^(m + n)*(a + b*x^n)^p, x], x] /; Free
Q[{a, b, c, p}, x] && IGtQ[n, 0] && LtQ[m, -1] && IntBinomialQ[a, b, c, n, m, p, x]

Rule 1980

Int[(x_)^(m_.)*(((e_.)*((a_.) + (b_.)*(x_)))/((c_) + (d_.)*(x_)))^(p_), x_Symbol] :> With[{q = Denominator[p]}
, Dist[q*e*(b*c - a*d), Subst[Int[x^(q*(p + 1) - 1)*(((-a)*e + c*x^q)^m/(b*e - d*x^q)^(m + 2)), x], x, (e*((a
+ b*x)/(c + d*x)))^(1/q)], x]] /; FreeQ[{a, b, c, d, e, m}, x] && FractionQ[p] && IntegerQ[m]

Rule 1981

Int[(x_)^(m_.)*(((e_.)*((a_.) + (b_.)*(x_)^(n_.)))/((c_) + (d_.)*(x_)^(n_.)))^(p_), x_Symbol] :> Dist[1/n, Sub
st[Int[x^(Simplify[(m + 1)/n] - 1)*(e*((a + b*x)/(c + d*x)))^p, x], x, x^n], x] /; FreeQ[{a, b, c, d, e, m, n,
 p}, x] && IntegerQ[Simplify[(m + 1)/n]]

Rubi steps \begin{align*} \text {integral}& = \frac {1}{2} \text {Subst}\left (\int \frac {1}{x^2 \left (\frac {e (a+b x)}{c+d x}\right )^{3/2}} \, dx,x,x^2\right ) \\ & = ((b c-a d) e) \text {Subst}\left (\int \frac {1}{x^2 \left (-a e+c x^2\right )^2} \, dx,x,\sqrt {\frac {e \left (a+b x^2\right )}{c+d x^2}}\right ) \\ & = \frac {b c-a d}{2 a \sqrt {\frac {e \left (a+b x^2\right )}{c+d x^2}} \left (a e-\frac {c e \left (a+b x^2\right )}{c+d x^2}\right )}-\frac {(3 (b c-a d)) \text {Subst}\left (\int \frac {1}{x^2 \left (-a e+c x^2\right )} \, dx,x,\sqrt {\frac {e \left (a+b x^2\right )}{c+d x^2}}\right )}{2 a} \\ & = -\frac {3 (b c-a d)}{2 a^2 e \sqrt {\frac {e \left (a+b x^2\right )}{c+d x^2}}}+\frac {b c-a d}{2 a \sqrt {\frac {e \left (a+b x^2\right )}{c+d x^2}} \left (a e-\frac {c e \left (a+b x^2\right )}{c+d x^2}\right )}-\frac {(3 c (b c-a d)) \text {Subst}\left (\int \frac {1}{-a e+c x^2} \, dx,x,\sqrt {\frac {e \left (a+b x^2\right )}{c+d x^2}}\right )}{2 a^2 e} \\ & = -\frac {3 (b c-a d)}{2 a^2 e \sqrt {\frac {e \left (a+b x^2\right )}{c+d x^2}}}+\frac {b c-a d}{2 a \sqrt {\frac {e \left (a+b x^2\right )}{c+d x^2}} \left (a e-\frac {c e \left (a+b x^2\right )}{c+d x^2}\right )}+\frac {3 \sqrt {c} (b c-a d) \tanh ^{-1}\left (\frac {\sqrt {c} \sqrt {\frac {e \left (a+b x^2\right )}{c+d x^2}}}{\sqrt {a} \sqrt {e}}\right )}{2 a^{5/2} e^{3/2}} \\ \end{align*}

Mathematica [A] (verified)

Time = 2.52 (sec) , antiderivative size = 148, normalized size of antiderivative = 0.87 \[ \int \frac {1}{x^3 \left (\frac {e \left (a+b x^2\right )}{c+d x^2}\right )^{3/2}} \, dx=\frac {-\sqrt {a} \sqrt {c+d x^2} \left (3 b c x^2+a \left (c-2 d x^2\right )\right )+3 \sqrt {c} (b c-a d) x^2 \sqrt {a+b x^2} \text {arctanh}\left (\frac {\sqrt {c} \sqrt {a+b x^2}}{\sqrt {a} \sqrt {c+d x^2}}\right )}{2 a^{5/2} e x^2 \sqrt {\frac {e \left (a+b x^2\right )}{c+d x^2}} \sqrt {c+d x^2}} \]

[In]

Integrate[1/(x^3*((e*(a + b*x^2))/(c + d*x^2))^(3/2)),x]

[Out]

(-(Sqrt[a]*Sqrt[c + d*x^2]*(3*b*c*x^2 + a*(c - 2*d*x^2))) + 3*Sqrt[c]*(b*c - a*d)*x^2*Sqrt[a + b*x^2]*ArcTanh[
(Sqrt[c]*Sqrt[a + b*x^2])/(Sqrt[a]*Sqrt[c + d*x^2])])/(2*a^(5/2)*e*x^2*Sqrt[(e*(a + b*x^2))/(c + d*x^2)]*Sqrt[
c + d*x^2])

Maple [A] (verified)

Time = 0.20 (sec) , antiderivative size = 242, normalized size of antiderivative = 1.42

method result size
risch \(-\frac {c \left (b \,x^{2}+a \right )}{2 a^{2} x^{2} e \sqrt {\frac {e \left (b \,x^{2}+a \right )}{d \,x^{2}+c}}}+\frac {\left (-\frac {3 c \left (a d -b c \right ) \ln \left (\frac {2 a c e +\left (e d a +e b c \right ) x^{2}+2 \sqrt {a c e}\, \sqrt {b d e \,x^{4}+\left (e d a +e b c \right ) x^{2}+a c e}}{x^{2}}\right )}{2 \sqrt {a c e}}+\frac {\left (2 a^{2} d^{2}-4 a b c d +2 b^{2} c^{2}\right ) \left (d \,x^{2}+c \right )}{\left (a d -b c \right ) \sqrt {b d e \,x^{4}+a d e \,x^{2}+b c e \,x^{2}+a c e}}\right ) \sqrt {\left (d \,x^{2}+c \right ) e \left (b \,x^{2}+a \right )}}{2 a^{2} e \sqrt {\frac {e \left (b \,x^{2}+a \right )}{d \,x^{2}+c}}\, \left (d \,x^{2}+c \right )}\) \(242\)
default \(\frac {\left (2 \sqrt {b d \,x^{4}+a d \,x^{2}+b c \,x^{2}+a c}\, \sqrt {a c}\, b^{2} d \,x^{6}-3 \ln \left (\frac {a d \,x^{2}+b c \,x^{2}+2 \sqrt {a c}\, \sqrt {b d \,x^{4}+a d \,x^{2}+b c \,x^{2}+a c}+2 a c}{x^{2}}\right ) a^{2} b c d \,x^{4}+3 \ln \left (\frac {a d \,x^{2}+b c \,x^{2}+2 \sqrt {a c}\, \sqrt {b d \,x^{4}+a d \,x^{2}+b c \,x^{2}+a c}+2 a c}{x^{2}}\right ) a \,b^{2} c^{2} x^{4}+4 \sqrt {b d \,x^{4}+a d \,x^{2}+b c \,x^{2}+a c}\, \sqrt {a c}\, a b d \,x^{4}+2 \sqrt {b d \,x^{4}+a d \,x^{2}+b c \,x^{2}+a c}\, \sqrt {a c}\, b^{2} c \,x^{4}-3 \ln \left (\frac {a d \,x^{2}+b c \,x^{2}+2 \sqrt {a c}\, \sqrt {b d \,x^{4}+a d \,x^{2}+b c \,x^{2}+a c}+2 a c}{x^{2}}\right ) a^{3} c d \,x^{2}+3 \ln \left (\frac {a d \,x^{2}+b c \,x^{2}+2 \sqrt {a c}\, \sqrt {b d \,x^{4}+a d \,x^{2}+b c \,x^{2}+a c}+2 a c}{x^{2}}\right ) a^{2} b \,c^{2} x^{2}+4 \sqrt {\left (d \,x^{2}+c \right ) \left (b \,x^{2}+a \right )}\, \sqrt {a c}\, a^{2} d \,x^{2}-4 \sqrt {\left (d \,x^{2}+c \right ) \left (b \,x^{2}+a \right )}\, \sqrt {a c}\, a b c \,x^{2}-2 \left (b d \,x^{4}+a d \,x^{2}+b c \,x^{2}+a c \right )^{\frac {3}{2}} \sqrt {a c}\, b \,x^{2}+2 \sqrt {b d \,x^{4}+a d \,x^{2}+b c \,x^{2}+a c}\, \sqrt {a c}\, a^{2} d \,x^{2}+2 \sqrt {b d \,x^{4}+a d \,x^{2}+b c \,x^{2}+a c}\, \sqrt {a c}\, a b c \,x^{2}-2 \left (b d \,x^{4}+a d \,x^{2}+b c \,x^{2}+a c \right )^{\frac {3}{2}} \sqrt {a c}\, a \right ) \left (b \,x^{2}+a \right )}{4 \sqrt {a c}\, x^{2} a^{3} \sqrt {\left (d \,x^{2}+c \right ) \left (b \,x^{2}+a \right )}\, \left (d \,x^{2}+c \right ) {\left (\frac {e \left (b \,x^{2}+a \right )}{d \,x^{2}+c}\right )}^{\frac {3}{2}}}\) \(641\)

[In]

int(1/x^3/(e*(b*x^2+a)/(d*x^2+c))^(3/2),x,method=_RETURNVERBOSE)

[Out]

-1/2/a^2*c*(b*x^2+a)/x^2/e/(e*(b*x^2+a)/(d*x^2+c))^(1/2)+1/2/a^2*(-3/2*c*(a*d-b*c)/(a*c*e)^(1/2)*ln((2*a*c*e+(
a*d*e+b*c*e)*x^2+2*(a*c*e)^(1/2)*(b*d*e*x^4+(a*d*e+b*c*e)*x^2+a*c*e)^(1/2))/x^2)+(2*a^2*d^2-4*a*b*c*d+2*b^2*c^
2)*(d*x^2+c)/(a*d-b*c)/(b*d*e*x^4+a*d*e*x^2+b*c*e*x^2+a*c*e)^(1/2))/e/(e*(b*x^2+a)/(d*x^2+c))^(1/2)*((d*x^2+c)
*e*(b*x^2+a))^(1/2)/(d*x^2+c)

Fricas [A] (verification not implemented)

none

Time = 1.29 (sec) , antiderivative size = 469, normalized size of antiderivative = 2.76 \[ \int \frac {1}{x^3 \left (\frac {e \left (a+b x^2\right )}{c+d x^2}\right )^{3/2}} \, dx=\left [-\frac {3 \, {\left ({\left (b^{2} c - a b d\right )} e x^{4} + {\left (a b c - a^{2} d\right )} e x^{2}\right )} \sqrt {\frac {c}{a e}} \log \left (\frac {{\left (b^{2} c^{2} + 6 \, a b c d + a^{2} d^{2}\right )} x^{4} + 8 \, a^{2} c^{2} + 8 \, {\left (a b c^{2} + a^{2} c d\right )} x^{2} - 4 \, {\left ({\left (a b c d + a^{2} d^{2}\right )} x^{4} + 2 \, a^{2} c^{2} + {\left (a b c^{2} + 3 \, a^{2} c d\right )} x^{2}\right )} \sqrt {\frac {b e x^{2} + a e}{d x^{2} + c}} \sqrt {\frac {c}{a e}}}{x^{4}}\right ) + 4 \, {\left ({\left (3 \, b c d - 2 \, a d^{2}\right )} x^{4} + a c^{2} + {\left (3 \, b c^{2} - a c d\right )} x^{2}\right )} \sqrt {\frac {b e x^{2} + a e}{d x^{2} + c}}}{8 \, {\left (a^{2} b e^{2} x^{4} + a^{3} e^{2} x^{2}\right )}}, -\frac {3 \, {\left ({\left (b^{2} c - a b d\right )} e x^{4} + {\left (a b c - a^{2} d\right )} e x^{2}\right )} \sqrt {-\frac {c}{a e}} \arctan \left (\frac {{\left ({\left (b c + a d\right )} x^{2} + 2 \, a c\right )} \sqrt {\frac {b e x^{2} + a e}{d x^{2} + c}} \sqrt {-\frac {c}{a e}}}{2 \, {\left (b c x^{2} + a c\right )}}\right ) + 2 \, {\left ({\left (3 \, b c d - 2 \, a d^{2}\right )} x^{4} + a c^{2} + {\left (3 \, b c^{2} - a c d\right )} x^{2}\right )} \sqrt {\frac {b e x^{2} + a e}{d x^{2} + c}}}{4 \, {\left (a^{2} b e^{2} x^{4} + a^{3} e^{2} x^{2}\right )}}\right ] \]

[In]

integrate(1/x^3/(e*(b*x^2+a)/(d*x^2+c))^(3/2),x, algorithm="fricas")

[Out]

[-1/8*(3*((b^2*c - a*b*d)*e*x^4 + (a*b*c - a^2*d)*e*x^2)*sqrt(c/(a*e))*log(((b^2*c^2 + 6*a*b*c*d + a^2*d^2)*x^
4 + 8*a^2*c^2 + 8*(a*b*c^2 + a^2*c*d)*x^2 - 4*((a*b*c*d + a^2*d^2)*x^4 + 2*a^2*c^2 + (a*b*c^2 + 3*a^2*c*d)*x^2
)*sqrt((b*e*x^2 + a*e)/(d*x^2 + c))*sqrt(c/(a*e)))/x^4) + 4*((3*b*c*d - 2*a*d^2)*x^4 + a*c^2 + (3*b*c^2 - a*c*
d)*x^2)*sqrt((b*e*x^2 + a*e)/(d*x^2 + c)))/(a^2*b*e^2*x^4 + a^3*e^2*x^2), -1/4*(3*((b^2*c - a*b*d)*e*x^4 + (a*
b*c - a^2*d)*e*x^2)*sqrt(-c/(a*e))*arctan(1/2*((b*c + a*d)*x^2 + 2*a*c)*sqrt((b*e*x^2 + a*e)/(d*x^2 + c))*sqrt
(-c/(a*e))/(b*c*x^2 + a*c)) + 2*((3*b*c*d - 2*a*d^2)*x^4 + a*c^2 + (3*b*c^2 - a*c*d)*x^2)*sqrt((b*e*x^2 + a*e)
/(d*x^2 + c)))/(a^2*b*e^2*x^4 + a^3*e^2*x^2)]

Sympy [F(-1)]

Timed out. \[ \int \frac {1}{x^3 \left (\frac {e \left (a+b x^2\right )}{c+d x^2}\right )^{3/2}} \, dx=\text {Timed out} \]

[In]

integrate(1/x**3/(e*(b*x**2+a)/(d*x**2+c))**(3/2),x)

[Out]

Timed out

Maxima [F(-2)]

Exception generated. \[ \int \frac {1}{x^3 \left (\frac {e \left (a+b x^2\right )}{c+d x^2}\right )^{3/2}} \, dx=\text {Exception raised: ValueError} \]

[In]

integrate(1/x^3/(e*(b*x^2+a)/(d*x^2+c))^(3/2),x, algorithm="maxima")

[Out]

Exception raised: ValueError >> Computation failed since Maxima requested additional constraints; using the 'a
ssume' command before evaluation *may* help (example of legal syntax is 'assume(e>0)', see `assume?` for more
details)Is e

Giac [F(-2)]

Exception generated. \[ \int \frac {1}{x^3 \left (\frac {e \left (a+b x^2\right )}{c+d x^2}\right )^{3/2}} \, dx=\text {Exception raised: TypeError} \]

[In]

integrate(1/x^3/(e*(b*x^2+a)/(d*x^2+c))^(3/2),x, algorithm="giac")

[Out]

Exception raised: TypeError >> an error occurred running a Giac command:INPUT:sage2:=int(sage0,sageVARx):;OUTP
UT:Unable to divide, perhaps due to rounding error%%%{%%%{2,[1,0,0]%%%},[6,1,0,0]%%%}+%%%{%%{[-4,0]:[1,0,%%%{-
1,[1,1,1]%%

Mupad [F(-1)]

Timed out. \[ \int \frac {1}{x^3 \left (\frac {e \left (a+b x^2\right )}{c+d x^2}\right )^{3/2}} \, dx=\int \frac {1}{x^3\,{\left (\frac {e\,\left (b\,x^2+a\right )}{d\,x^2+c}\right )}^{3/2}} \,d x \]

[In]

int(1/(x^3*((e*(a + b*x^2))/(c + d*x^2))^(3/2)),x)

[Out]

int(1/(x^3*((e*(a + b*x^2))/(c + d*x^2))^(3/2)), x)