\(\int \frac {1}{x \sqrt {-1+x^6}} \, dx\) [59]

   Optimal result
   Rubi [A] (verified)
   Mathematica [A] (verified)
   Maple [A] (verified)
   Fricas [A] (verification not implemented)
   Sympy [C] (verification not implemented)
   Maxima [A] (verification not implemented)
   Giac [A] (verification not implemented)
   Mupad [B] (verification not implemented)

Optimal result

Integrand size = 13, antiderivative size = 14 \[ \int \frac {1}{x \sqrt {-1+x^6}} \, dx=\frac {1}{3} \arctan \left (\sqrt {-1+x^6}\right ) \]

[Out]

1/3*arctan((x^6-1)^(1/2))

Rubi [A] (verified)

Time = 0.00 (sec) , antiderivative size = 14, normalized size of antiderivative = 1.00, number of steps used = 3, number of rules used = 3, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.231, Rules used = {272, 65, 209} \[ \int \frac {1}{x \sqrt {-1+x^6}} \, dx=\frac {1}{3} \arctan \left (\sqrt {x^6-1}\right ) \]

[In]

Int[1/(x*Sqrt[-1 + x^6]),x]

[Out]

ArcTan[Sqrt[-1 + x^6]]/3

Rule 65

Int[((a_.) + (b_.)*(x_))^(m_)*((c_.) + (d_.)*(x_))^(n_), x_Symbol] :> With[{p = Denominator[m]}, Dist[p/b, Sub
st[Int[x^(p*(m + 1) - 1)*(c - a*(d/b) + d*(x^p/b))^n, x], x, (a + b*x)^(1/p)], x]] /; FreeQ[{a, b, c, d}, x] &
& NeQ[b*c - a*d, 0] && LtQ[-1, m, 0] && LeQ[-1, n, 0] && LeQ[Denominator[n], Denominator[m]] && IntLinearQ[a,
b, c, d, m, n, x]

Rule 209

Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> Simp[(1/(Rt[a, 2]*Rt[b, 2]))*ArcTan[Rt[b, 2]*(x/Rt[a, 2])], x] /;
 FreeQ[{a, b}, x] && PosQ[a/b] && (GtQ[a, 0] || GtQ[b, 0])

Rule 272

Int[(x_)^(m_.)*((a_) + (b_.)*(x_)^(n_))^(p_), x_Symbol] :> Dist[1/n, Subst[Int[x^(Simplify[(m + 1)/n] - 1)*(a
+ b*x)^p, x], x, x^n], x] /; FreeQ[{a, b, m, n, p}, x] && IntegerQ[Simplify[(m + 1)/n]]

Rubi steps \begin{align*} \text {integral}& = \frac {1}{6} \text {Subst}\left (\int \frac {1}{\sqrt {-1+x} x} \, dx,x,x^6\right ) \\ & = \frac {1}{3} \text {Subst}\left (\int \frac {1}{1+x^2} \, dx,x,\sqrt {-1+x^6}\right ) \\ & = \frac {1}{3} \arctan \left (\sqrt {-1+x^6}\right ) \\ \end{align*}

Mathematica [A] (verified)

Time = 0.02 (sec) , antiderivative size = 14, normalized size of antiderivative = 1.00 \[ \int \frac {1}{x \sqrt {-1+x^6}} \, dx=\frac {1}{3} \arctan \left (\sqrt {-1+x^6}\right ) \]

[In]

Integrate[1/(x*Sqrt[-1 + x^6]),x]

[Out]

ArcTan[Sqrt[-1 + x^6]]/3

Maple [A] (verified)

Time = 1.37 (sec) , antiderivative size = 11, normalized size of antiderivative = 0.79

method result size
pseudoelliptic \(-\frac {\arctan \left (\frac {1}{\sqrt {x^{6}-1}}\right )}{3}\) \(11\)
trager \(\frac {\operatorname {RootOf}\left (\textit {\_Z}^{2}+1\right ) \ln \left (\frac {\operatorname {RootOf}\left (\textit {\_Z}^{2}+1\right )+\sqrt {x^{6}-1}}{x^{3}}\right )}{3}\) \(28\)
meijerg \(\frac {\sqrt {-\operatorname {signum}\left (x^{6}-1\right )}\, \left (-2 \sqrt {\pi }\, \ln \left (\frac {1}{2}+\frac {\sqrt {-x^{6}+1}}{2}\right )+\left (-2 \ln \left (2\right )+6 \ln \left (x \right )+i \pi \right ) \sqrt {\pi }\right )}{6 \sqrt {\pi }\, \sqrt {\operatorname {signum}\left (x^{6}-1\right )}}\) \(61\)

[In]

int(1/x/(x^6-1)^(1/2),x,method=_RETURNVERBOSE)

[Out]

-1/3*arctan(1/(x^6-1)^(1/2))

Fricas [A] (verification not implemented)

none

Time = 0.23 (sec) , antiderivative size = 10, normalized size of antiderivative = 0.71 \[ \int \frac {1}{x \sqrt {-1+x^6}} \, dx=\frac {1}{3} \, \arctan \left (\sqrt {x^{6} - 1}\right ) \]

[In]

integrate(1/x/(x^6-1)^(1/2),x, algorithm="fricas")

[Out]

1/3*arctan(sqrt(x^6 - 1))

Sympy [C] (verification not implemented)

Result contains complex when optimal does not.

Time = 0.46 (sec) , antiderivative size = 24, normalized size of antiderivative = 1.71 \[ \int \frac {1}{x \sqrt {-1+x^6}} \, dx=\begin {cases} \frac {i \operatorname {acosh}{\left (\frac {1}{x^{3}} \right )}}{3} & \text {for}\: \frac {1}{\left |{x^{6}}\right |} > 1 \\- \frac {\operatorname {asin}{\left (\frac {1}{x^{3}} \right )}}{3} & \text {otherwise} \end {cases} \]

[In]

integrate(1/x/(x**6-1)**(1/2),x)

[Out]

Piecewise((I*acosh(x**(-3))/3, 1/Abs(x**6) > 1), (-asin(x**(-3))/3, True))

Maxima [A] (verification not implemented)

none

Time = 0.25 (sec) , antiderivative size = 10, normalized size of antiderivative = 0.71 \[ \int \frac {1}{x \sqrt {-1+x^6}} \, dx=\frac {1}{3} \, \arctan \left (\sqrt {x^{6} - 1}\right ) \]

[In]

integrate(1/x/(x^6-1)^(1/2),x, algorithm="maxima")

[Out]

1/3*arctan(sqrt(x^6 - 1))

Giac [A] (verification not implemented)

none

Time = 0.28 (sec) , antiderivative size = 10, normalized size of antiderivative = 0.71 \[ \int \frac {1}{x \sqrt {-1+x^6}} \, dx=\frac {1}{3} \, \arctan \left (\sqrt {x^{6} - 1}\right ) \]

[In]

integrate(1/x/(x^6-1)^(1/2),x, algorithm="giac")

[Out]

1/3*arctan(sqrt(x^6 - 1))

Mupad [B] (verification not implemented)

Time = 4.95 (sec) , antiderivative size = 10, normalized size of antiderivative = 0.71 \[ \int \frac {1}{x \sqrt {-1+x^6}} \, dx=\frac {\mathrm {atan}\left (\sqrt {x^6-1}\right )}{3} \]

[In]

int(1/(x*(x^6 - 1)^(1/2)),x)

[Out]

atan((x^6 - 1)^(1/2))/3