\(\int \frac {2+x^2}{(-2-2 x+x^2) \sqrt {-1+x^3}} \, dx\) [1213]

   Optimal result
   Rubi [C] (verified)
   Mathematica [A] (verified)
   Maple [C] (verified)
   Fricas [C] (verification not implemented)
   Sympy [F]
   Maxima [F]
   Giac [F]
   Mupad [B] (verification not implemented)

Optimal result

Integrand size = 25, antiderivative size = 89 \[ \int \frac {2+x^2}{\left (-2-2 x+x^2\right ) \sqrt {-1+x^3}} \, dx=-\frac {\sqrt {2} \arctan \left (\frac {\sqrt {-3+2 \sqrt {3}} \sqrt {-1+x^3}}{1+x+x^2}\right )}{3^{3/4}}-\frac {\sqrt {2} \text {arctanh}\left (\frac {\sqrt {3+2 \sqrt {3}} \sqrt {-1+x^3}}{1+x+x^2}\right )}{3^{3/4}} \]

[Out]

-1/3*2^(1/2)*arctan((-3+2*3^(1/2))^(1/2)*(x^3-1)^(1/2)/(x^2+x+1))*3^(1/4)-1/3*2^(1/2)*arctanh((3+2*3^(1/2))^(1
/2)*(x^3-1)^(1/2)/(x^2+x+1))*3^(1/4)

Rubi [C] (verified)

Result contains higher order function than in optimal. Order 4 vs. order 3 in optimal.

Time = 0.96 (sec) , antiderivative size = 433, normalized size of antiderivative = 4.87, number of steps used = 13, number of rules used = 6, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.240, Rules used = {6860, 225, 2160, 2165, 212, 209} \[ \int \frac {2+x^2}{\left (-2-2 x+x^2\right ) \sqrt {-1+x^3}} \, dx=-\frac {2 \sqrt {2-\sqrt {3}} (1-x) \sqrt {\frac {x^2+x+1}{\left (-x-\sqrt {3}+1\right )^2}} \operatorname {EllipticF}\left (\arcsin \left (\frac {-x+\sqrt {3}+1}{-x-\sqrt {3}+1}\right ),-7+4 \sqrt {3}\right )}{\sqrt [4]{3} \sqrt {-\frac {1-x}{\left (-x-\sqrt {3}+1\right )^2}} \sqrt {x^3-1}}+\frac {\sqrt {2 \left (7-4 \sqrt {3}\right )} (1-x) \sqrt {\frac {x^2+x+1}{\left (-x-\sqrt {3}+1\right )^2}} \operatorname {EllipticF}\left (\arcsin \left (\frac {-x+\sqrt {3}+1}{-x-\sqrt {3}+1}\right ),-7+4 \sqrt {3}\right )}{3^{3/4} \sqrt {-\frac {1-x}{\left (-x-\sqrt {3}+1\right )^2}} \sqrt {x^3-1}}+\frac {\sqrt {2} (1-x) \sqrt {\frac {x^2+x+1}{\left (-x-\sqrt {3}+1\right )^2}} \operatorname {EllipticF}\left (\arcsin \left (\frac {-x+\sqrt {3}+1}{-x-\sqrt {3}+1}\right ),-7+4 \sqrt {3}\right )}{3^{3/4} \sqrt {-\frac {1-x}{\left (-x-\sqrt {3}+1\right )^2}} \sqrt {x^3-1}}+\frac {\sqrt {2} \arctan \left (\frac {\sqrt {2 \sqrt {3}-3} (1-x)}{\sqrt {x^3-1}}\right )}{3^{3/4}}+\frac {\sqrt {2} \text {arctanh}\left (\frac {\sqrt {3+2 \sqrt {3}} (1-x)}{\sqrt {x^3-1}}\right )}{3^{3/4}} \]

[In]

Int[(2 + x^2)/((-2 - 2*x + x^2)*Sqrt[-1 + x^3]),x]

[Out]

(Sqrt[2]*ArcTan[(Sqrt[-3 + 2*Sqrt[3]]*(1 - x))/Sqrt[-1 + x^3]])/3^(3/4) + (Sqrt[2]*ArcTanh[(Sqrt[3 + 2*Sqrt[3]
]*(1 - x))/Sqrt[-1 + x^3]])/3^(3/4) + (Sqrt[2]*(1 - x)*Sqrt[(1 + x + x^2)/(1 - Sqrt[3] - x)^2]*EllipticF[ArcSi
n[(1 + Sqrt[3] - x)/(1 - Sqrt[3] - x)], -7 + 4*Sqrt[3]])/(3^(3/4)*Sqrt[-((1 - x)/(1 - Sqrt[3] - x)^2)]*Sqrt[-1
 + x^3]) + (Sqrt[2*(7 - 4*Sqrt[3])]*(1 - x)*Sqrt[(1 + x + x^2)/(1 - Sqrt[3] - x)^2]*EllipticF[ArcSin[(1 + Sqrt
[3] - x)/(1 - Sqrt[3] - x)], -7 + 4*Sqrt[3]])/(3^(3/4)*Sqrt[-((1 - x)/(1 - Sqrt[3] - x)^2)]*Sqrt[-1 + x^3]) -
(2*Sqrt[2 - Sqrt[3]]*(1 - x)*Sqrt[(1 + x + x^2)/(1 - Sqrt[3] - x)^2]*EllipticF[ArcSin[(1 + Sqrt[3] - x)/(1 - S
qrt[3] - x)], -7 + 4*Sqrt[3]])/(3^(1/4)*Sqrt[-((1 - x)/(1 - Sqrt[3] - x)^2)]*Sqrt[-1 + x^3])

Rule 209

Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> Simp[(1/(Rt[a, 2]*Rt[b, 2]))*ArcTan[Rt[b, 2]*(x/Rt[a, 2])], x] /;
 FreeQ[{a, b}, x] && PosQ[a/b] && (GtQ[a, 0] || GtQ[b, 0])

Rule 212

Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> Simp[(1/(Rt[a, 2]*Rt[-b, 2]))*ArcTanh[Rt[-b, 2]*(x/Rt[a, 2])], x]
 /; FreeQ[{a, b}, x] && NegQ[a/b] && (GtQ[a, 0] || LtQ[b, 0])

Rule 225

Int[1/Sqrt[(a_) + (b_.)*(x_)^3], x_Symbol] :> With[{r = Numer[Rt[b/a, 3]], s = Denom[Rt[b/a, 3]]}, Simp[2*Sqrt
[2 - Sqrt[3]]*(s + r*x)*(Sqrt[(s^2 - r*s*x + r^2*x^2)/((1 - Sqrt[3])*s + r*x)^2]/(3^(1/4)*r*Sqrt[a + b*x^3]*Sq
rt[(-s)*((s + r*x)/((1 - Sqrt[3])*s + r*x)^2)]))*EllipticF[ArcSin[((1 + Sqrt[3])*s + r*x)/((1 - Sqrt[3])*s + r
*x)], -7 + 4*Sqrt[3]], x]] /; FreeQ[{a, b}, x] && NegQ[a]

Rule 2160

Int[1/(((c_) + (d_.)*(x_))*Sqrt[(a_) + (b_.)*(x_)^3]), x_Symbol] :> Dist[-6*a*(d^3/(c*(b*c^3 - 28*a*d^3))), In
t[1/Sqrt[a + b*x^3], x], x] + Dist[1/(c*(b*c^3 - 28*a*d^3)), Int[Simp[c*(b*c^3 - 22*a*d^3) + 6*a*d^4*x, x]/((c
 + d*x)*Sqrt[a + b*x^3]), x], x] /; FreeQ[{a, b, c, d}, x] && EqQ[b^2*c^6 - 20*a*b*c^3*d^3 - 8*a^2*d^6, 0]

Rule 2165

Int[((e_) + (f_.)*(x_))/(((c_) + (d_.)*(x_))*Sqrt[(a_) + (b_.)*(x_)^3]), x_Symbol] :> With[{k = Simplify[(d*e
+ 2*c*f)/(c*f)]}, Dist[(1 + k)*(e/d), Subst[Int[1/(1 + (3 + 2*k)*a*x^2), x], x, (1 + (1 + k)*d*(x/c))/Sqrt[a +
 b*x^3]], x]] /; FreeQ[{a, b, c, d, e, f}, x] && NeQ[d*e - c*f, 0] && EqQ[b^2*c^6 - 20*a*b*c^3*d^3 - 8*a^2*d^6
, 0] && EqQ[6*a*d^4*e - c*f*(b*c^3 - 22*a*d^3), 0]

Rule 6860

Int[(u_)/((a_.) + (b_.)*(x_)^(n_.) + (c_.)*(x_)^(n2_.)), x_Symbol] :> With[{v = RationalFunctionExpand[u/(a +
b*x^n + c*x^(2*n)), x]}, Int[v, x] /; SumQ[v]] /; FreeQ[{a, b, c}, x] && EqQ[n2, 2*n] && IGtQ[n, 0]

Rubi steps \begin{align*} \text {integral}& = \int \left (\frac {1}{\sqrt {-1+x^3}}+\frac {2 (2+x)}{\left (-2-2 x+x^2\right ) \sqrt {-1+x^3}}\right ) \, dx \\ & = 2 \int \frac {2+x}{\left (-2-2 x+x^2\right ) \sqrt {-1+x^3}} \, dx+\int \frac {1}{\sqrt {-1+x^3}} \, dx \\ & = -\frac {2 \sqrt {2-\sqrt {3}} (1-x) \sqrt {\frac {1+x+x^2}{\left (1-\sqrt {3}-x\right )^2}} \operatorname {EllipticF}\left (\arcsin \left (\frac {1+\sqrt {3}-x}{1-\sqrt {3}-x}\right ),-7+4 \sqrt {3}\right )}{\sqrt [4]{3} \sqrt {-\frac {1-x}{\left (1-\sqrt {3}-x\right )^2}} \sqrt {-1+x^3}}+2 \int \left (\frac {1+\sqrt {3}}{\left (-2-2 \sqrt {3}+2 x\right ) \sqrt {-1+x^3}}+\frac {1-\sqrt {3}}{\left (-2+2 \sqrt {3}+2 x\right ) \sqrt {-1+x^3}}\right ) \, dx \\ & = -\frac {2 \sqrt {2-\sqrt {3}} (1-x) \sqrt {\frac {1+x+x^2}{\left (1-\sqrt {3}-x\right )^2}} \operatorname {EllipticF}\left (\arcsin \left (\frac {1+\sqrt {3}-x}{1-\sqrt {3}-x}\right ),-7+4 \sqrt {3}\right )}{\sqrt [4]{3} \sqrt {-\frac {1-x}{\left (1-\sqrt {3}-x\right )^2}} \sqrt {-1+x^3}}+\left (2 \left (1-\sqrt {3}\right )\right ) \int \frac {1}{\left (-2+2 \sqrt {3}+2 x\right ) \sqrt {-1+x^3}} \, dx+\left (2 \left (1+\sqrt {3}\right )\right ) \int \frac {1}{\left (-2-2 \sqrt {3}+2 x\right ) \sqrt {-1+x^3}} \, dx \\ & = -\frac {2 \sqrt {2-\sqrt {3}} (1-x) \sqrt {\frac {1+x+x^2}{\left (1-\sqrt {3}-x\right )^2}} \operatorname {EllipticF}\left (\arcsin \left (\frac {1+\sqrt {3}-x}{1-\sqrt {3}-x}\right ),-7+4 \sqrt {3}\right )}{\sqrt [4]{3} \sqrt {-\frac {1-x}{\left (1-\sqrt {3}-x\right )^2}} \sqrt {-1+x^3}}+\frac {1}{288} \left (-3+\sqrt {3}\right ) \int \frac {96 \left (1+\sqrt {3}\right )-96 x}{\left (-2+2 \sqrt {3}+2 x\right ) \sqrt {-1+x^3}} \, dx+\frac {1}{6} \left (-3+\sqrt {3}\right ) \int \frac {1}{\sqrt {-1+x^3}} \, dx-\frac {1}{288} \left (3+\sqrt {3}\right ) \int \frac {96 \left (1-\sqrt {3}\right )-96 x}{\left (-2-2 \sqrt {3}+2 x\right ) \sqrt {-1+x^3}} \, dx-\frac {1}{6} \left (3+\sqrt {3}\right ) \int \frac {1}{\sqrt {-1+x^3}} \, dx \\ & = \frac {\sqrt {2} (1-x) \sqrt {\frac {1+x+x^2}{\left (1-\sqrt {3}-x\right )^2}} \operatorname {EllipticF}\left (\arcsin \left (\frac {1+\sqrt {3}-x}{1-\sqrt {3}-x}\right ),-7+4 \sqrt {3}\right )}{3^{3/4} \sqrt {-\frac {1-x}{\left (1-\sqrt {3}-x\right )^2}} \sqrt {-1+x^3}}+\frac {\sqrt {14-8 \sqrt {3}} (1-x) \sqrt {\frac {1+x+x^2}{\left (1-\sqrt {3}-x\right )^2}} \operatorname {EllipticF}\left (\arcsin \left (\frac {1+\sqrt {3}-x}{1-\sqrt {3}-x}\right ),-7+4 \sqrt {3}\right )}{3^{3/4} \sqrt {-\frac {1-x}{\left (1-\sqrt {3}-x\right )^2}} \sqrt {-1+x^3}}-\frac {2 \sqrt {2-\sqrt {3}} (1-x) \sqrt {\frac {1+x+x^2}{\left (1-\sqrt {3}-x\right )^2}} \operatorname {EllipticF}\left (\arcsin \left (\frac {1+\sqrt {3}-x}{1-\sqrt {3}-x}\right ),-7+4 \sqrt {3}\right )}{\sqrt [4]{3} \sqrt {-\frac {1-x}{\left (1-\sqrt {3}-x\right )^2}} \sqrt {-1+x^3}}+\frac {1}{3} \left (3-\sqrt {3}\right ) \text {Subst}\left (\int \frac {1}{1-\left (3-2 \sqrt {3}\right ) x^2} \, dx,x,\frac {1+\frac {2 \left (1-\sqrt {3}\right ) x}{-2+2 \sqrt {3}}}{\sqrt {-1+x^3}}\right )+\frac {1}{3} \left (3+\sqrt {3}\right ) \text {Subst}\left (\int \frac {1}{1-\left (3+2 \sqrt {3}\right ) x^2} \, dx,x,\frac {1+\frac {2 \left (1+\sqrt {3}\right ) x}{-2-2 \sqrt {3}}}{\sqrt {-1+x^3}}\right ) \\ & = \frac {\sqrt {2} \arctan \left (\frac {\sqrt {-3+2 \sqrt {3}} (1-x)}{\sqrt {-1+x^3}}\right )}{3^{3/4}}+\frac {\sqrt {2} \text {arctanh}\left (\frac {\sqrt {3+2 \sqrt {3}} (1-x)}{\sqrt {-1+x^3}}\right )}{3^{3/4}}+\frac {\sqrt {2} (1-x) \sqrt {\frac {1+x+x^2}{\left (1-\sqrt {3}-x\right )^2}} \operatorname {EllipticF}\left (\arcsin \left (\frac {1+\sqrt {3}-x}{1-\sqrt {3}-x}\right ),-7+4 \sqrt {3}\right )}{3^{3/4} \sqrt {-\frac {1-x}{\left (1-\sqrt {3}-x\right )^2}} \sqrt {-1+x^3}}+\frac {\sqrt {14-8 \sqrt {3}} (1-x) \sqrt {\frac {1+x+x^2}{\left (1-\sqrt {3}-x\right )^2}} \operatorname {EllipticF}\left (\arcsin \left (\frac {1+\sqrt {3}-x}{1-\sqrt {3}-x}\right ),-7+4 \sqrt {3}\right )}{3^{3/4} \sqrt {-\frac {1-x}{\left (1-\sqrt {3}-x\right )^2}} \sqrt {-1+x^3}}-\frac {2 \sqrt {2-\sqrt {3}} (1-x) \sqrt {\frac {1+x+x^2}{\left (1-\sqrt {3}-x\right )^2}} \operatorname {EllipticF}\left (\arcsin \left (\frac {1+\sqrt {3}-x}{1-\sqrt {3}-x}\right ),-7+4 \sqrt {3}\right )}{\sqrt [4]{3} \sqrt {-\frac {1-x}{\left (1-\sqrt {3}-x\right )^2}} \sqrt {-1+x^3}} \\ \end{align*}

Mathematica [A] (verified)

Time = 1.52 (sec) , antiderivative size = 77, normalized size of antiderivative = 0.87 \[ \int \frac {2+x^2}{\left (-2-2 x+x^2\right ) \sqrt {-1+x^3}} \, dx=-\frac {\sqrt {2} \left (\arctan \left (\frac {\sqrt {-3+2 \sqrt {3}} \sqrt {-1+x^3}}{1+x+x^2}\right )+\text {arctanh}\left (\frac {\sqrt {3+2 \sqrt {3}} \sqrt {-1+x^3}}{1+x+x^2}\right )\right )}{3^{3/4}} \]

[In]

Integrate[(2 + x^2)/((-2 - 2*x + x^2)*Sqrt[-1 + x^3]),x]

[Out]

-((Sqrt[2]*(ArcTan[(Sqrt[-3 + 2*Sqrt[3]]*Sqrt[-1 + x^3])/(1 + x + x^2)] + ArcTanh[(Sqrt[3 + 2*Sqrt[3]]*Sqrt[-1
 + x^3])/(1 + x + x^2)]))/3^(3/4))

Maple [C] (verified)

Result contains higher order function than in optimal. Order 4 vs. order 3.

Time = 8.33 (sec) , antiderivative size = 1516, normalized size of antiderivative = 17.03

method result size
default \(\text {Expression too large to display}\) \(1516\)
elliptic \(\text {Expression too large to display}\) \(1725\)

[In]

int((x^2+2)/(x^2-2*x-2)/(x^3-1)^(1/2),x,method=_RETURNVERBOSE)

[Out]

2*(-3/2-1/2*I*3^(1/2))*((x-1)/(-3/2-1/2*I*3^(1/2)))^(1/2)*((x+1/2-1/2*I*3^(1/2))/(3/2-1/2*I*3^(1/2)))^(1/2)*((
x+1/2+1/2*I*3^(1/2))/(3/2+1/2*I*3^(1/2)))^(1/2)/(x^3-1)^(1/2)*EllipticF(((x-1)/(-3/2-1/2*I*3^(1/2)))^(1/2),((3
/2+1/2*I*3^(1/2))/(3/2-1/2*I*3^(1/2)))^(1/2))+3*(1/(-3/2-1/2*I*3^(1/2))*x-1/(-3/2-1/2*I*3^(1/2)))^(1/2)*(1/(3/
2-1/2*I*3^(1/2))*x+1/2/(3/2-1/2*I*3^(1/2))-1/2*I/(3/2-1/2*I*3^(1/2))*3^(1/2))^(1/2)*(1/(3/2+1/2*I*3^(1/2))*x+1
/2/(3/2+1/2*I*3^(1/2))+1/2*I/(3/2+1/2*I*3^(1/2))*3^(1/2))^(1/2)/(x^3-1)^(1/2)*EllipticPi(((x-1)/(-3/2-1/2*I*3^
(1/2)))^(1/2),-1/3*(3/2+1/2*I*3^(1/2))*3^(1/2),((3/2+1/2*I*3^(1/2))/(3/2-1/2*I*3^(1/2)))^(1/2))+I*(1/(-3/2-1/2
*I*3^(1/2))*x-1/(-3/2-1/2*I*3^(1/2)))^(1/2)*(1/(3/2-1/2*I*3^(1/2))*x+1/2/(3/2-1/2*I*3^(1/2))-1/2*I/(3/2-1/2*I*
3^(1/2))*3^(1/2))^(1/2)*(1/(3/2+1/2*I*3^(1/2))*x+1/2/(3/2+1/2*I*3^(1/2))+1/2*I/(3/2+1/2*I*3^(1/2))*3^(1/2))^(1
/2)/(x^3-1)^(1/2)*EllipticPi(((x-1)/(-3/2-1/2*I*3^(1/2)))^(1/2),-1/3*(3/2+1/2*I*3^(1/2))*3^(1/2),((3/2+1/2*I*3
^(1/2))/(3/2-1/2*I*3^(1/2)))^(1/2))+I*(1/(-3/2-1/2*I*3^(1/2))*x-1/(-3/2-1/2*I*3^(1/2)))^(1/2)*(1/(3/2-1/2*I*3^
(1/2))*x+1/2/(3/2-1/2*I*3^(1/2))-1/2*I/(3/2-1/2*I*3^(1/2))*3^(1/2))^(1/2)*(1/(3/2+1/2*I*3^(1/2))*x+1/2/(3/2+1/
2*I*3^(1/2))+1/2*I/(3/2+1/2*I*3^(1/2))*3^(1/2))^(1/2)/(x^3-1)^(1/2)*EllipticPi(((x-1)/(-3/2-1/2*I*3^(1/2)))^(1
/2),-1/3*(3/2+1/2*I*3^(1/2))*3^(1/2),((3/2+1/2*I*3^(1/2))/(3/2-1/2*I*3^(1/2)))^(1/2))*3^(1/2)+(1/(-3/2-1/2*I*3
^(1/2))*x-1/(-3/2-1/2*I*3^(1/2)))^(1/2)*(1/(3/2-1/2*I*3^(1/2))*x+1/2/(3/2-1/2*I*3^(1/2))-1/2*I/(3/2-1/2*I*3^(1
/2))*3^(1/2))^(1/2)*(1/(3/2+1/2*I*3^(1/2))*x+1/2/(3/2+1/2*I*3^(1/2))+1/2*I/(3/2+1/2*I*3^(1/2))*3^(1/2))^(1/2)/
(x^3-1)^(1/2)*EllipticPi(((x-1)/(-3/2-1/2*I*3^(1/2)))^(1/2),-1/3*(3/2+1/2*I*3^(1/2))*3^(1/2),((3/2+1/2*I*3^(1/
2))/(3/2-1/2*I*3^(1/2)))^(1/2))*3^(1/2)+3*(1/(-3/2-1/2*I*3^(1/2))*x-1/(-3/2-1/2*I*3^(1/2)))^(1/2)*(1/(3/2-1/2*
I*3^(1/2))*x+1/2/(3/2-1/2*I*3^(1/2))-1/2*I/(3/2-1/2*I*3^(1/2))*3^(1/2))^(1/2)*(1/(3/2+1/2*I*3^(1/2))*x+1/2/(3/
2+1/2*I*3^(1/2))+1/2*I/(3/2+1/2*I*3^(1/2))*3^(1/2))^(1/2)/(x^3-1)^(1/2)*EllipticPi(((x-1)/(-3/2-1/2*I*3^(1/2))
)^(1/2),1/3*(3/2+1/2*I*3^(1/2))*3^(1/2),((3/2+1/2*I*3^(1/2))/(3/2-1/2*I*3^(1/2)))^(1/2))-I*(1/(-3/2-1/2*I*3^(1
/2))*x-1/(-3/2-1/2*I*3^(1/2)))^(1/2)*(1/(3/2-1/2*I*3^(1/2))*x+1/2/(3/2-1/2*I*3^(1/2))-1/2*I/(3/2-1/2*I*3^(1/2)
)*3^(1/2))^(1/2)*(1/(3/2+1/2*I*3^(1/2))*x+1/2/(3/2+1/2*I*3^(1/2))+1/2*I/(3/2+1/2*I*3^(1/2))*3^(1/2))^(1/2)/(x^
3-1)^(1/2)*EllipticPi(((x-1)/(-3/2-1/2*I*3^(1/2)))^(1/2),1/3*(3/2+1/2*I*3^(1/2))*3^(1/2),((3/2+1/2*I*3^(1/2))/
(3/2-1/2*I*3^(1/2)))^(1/2))+I*(1/(-3/2-1/2*I*3^(1/2))*x-1/(-3/2-1/2*I*3^(1/2)))^(1/2)*(1/(3/2-1/2*I*3^(1/2))*x
+1/2/(3/2-1/2*I*3^(1/2))-1/2*I/(3/2-1/2*I*3^(1/2))*3^(1/2))^(1/2)*(1/(3/2+1/2*I*3^(1/2))*x+1/2/(3/2+1/2*I*3^(1
/2))+1/2*I/(3/2+1/2*I*3^(1/2))*3^(1/2))^(1/2)/(x^3-1)^(1/2)*EllipticPi(((x-1)/(-3/2-1/2*I*3^(1/2)))^(1/2),1/3*
(3/2+1/2*I*3^(1/2))*3^(1/2),((3/2+1/2*I*3^(1/2))/(3/2-1/2*I*3^(1/2)))^(1/2))*3^(1/2)-(1/(-3/2-1/2*I*3^(1/2))*x
-1/(-3/2-1/2*I*3^(1/2)))^(1/2)*(1/(3/2-1/2*I*3^(1/2))*x+1/2/(3/2-1/2*I*3^(1/2))-1/2*I/(3/2-1/2*I*3^(1/2))*3^(1
/2))^(1/2)*(1/(3/2+1/2*I*3^(1/2))*x+1/2/(3/2+1/2*I*3^(1/2))+1/2*I/(3/2+1/2*I*3^(1/2))*3^(1/2))^(1/2)/(x^3-1)^(
1/2)*EllipticPi(((x-1)/(-3/2-1/2*I*3^(1/2)))^(1/2),1/3*(3/2+1/2*I*3^(1/2))*3^(1/2),((3/2+1/2*I*3^(1/2))/(3/2-1
/2*I*3^(1/2)))^(1/2))*3^(1/2)

Fricas [C] (verification not implemented)

Result contains complex when optimal does not.

Time = 0.30 (sec) , antiderivative size = 384, normalized size of antiderivative = 4.31 \[ \int \frac {2+x^2}{\left (-2-2 x+x^2\right ) \sqrt {-1+x^3}} \, dx=-\frac {1}{108} \cdot 27^{\frac {3}{4}} \sqrt {2} \log \left (\frac {2 \, {\left (9 \, x^{4} + 18 \, x^{3} + 54 \, x^{2} + 36 \, \sqrt {3} {\left (x^{3} - 1\right )} + \sqrt {x^{3} - 1} {\left (27^{\frac {3}{4}} \sqrt {2} {\left (x^{2} + 4 \, x - 2\right )} + 9 \cdot 27^{\frac {1}{4}} \sqrt {2} {\left (x^{2} + 2\right )}\right )} - 36 \, x + 36\right )}}{x^{4} - 4 \, x^{3} + 8 \, x + 4}\right ) + \frac {1}{108} \cdot 27^{\frac {3}{4}} \sqrt {2} \log \left (\frac {2 \, {\left (9 \, x^{4} + 18 \, x^{3} + 54 \, x^{2} + 36 \, \sqrt {3} {\left (x^{3} - 1\right )} - \sqrt {x^{3} - 1} {\left (27^{\frac {3}{4}} \sqrt {2} {\left (x^{2} + 4 \, x - 2\right )} + 9 \cdot 27^{\frac {1}{4}} \sqrt {2} {\left (x^{2} + 2\right )}\right )} - 36 \, x + 36\right )}}{x^{4} - 4 \, x^{3} + 8 \, x + 4}\right ) + \frac {1}{108} i \cdot 27^{\frac {3}{4}} \sqrt {2} \log \left (\frac {2 \, {\left (9 \, x^{4} + 18 \, x^{3} + 54 \, x^{2} - 36 \, \sqrt {3} {\left (x^{3} - 1\right )} - \sqrt {x^{3} - 1} {\left (27^{\frac {3}{4}} \sqrt {2} {\left (i \, x^{2} + 4 i \, x - 2 i\right )} + 9 \cdot 27^{\frac {1}{4}} \sqrt {2} {\left (-i \, x^{2} - 2 i\right )}\right )} - 36 \, x + 36\right )}}{x^{4} - 4 \, x^{3} + 8 \, x + 4}\right ) - \frac {1}{108} i \cdot 27^{\frac {3}{4}} \sqrt {2} \log \left (\frac {2 \, {\left (9 \, x^{4} + 18 \, x^{3} + 54 \, x^{2} - 36 \, \sqrt {3} {\left (x^{3} - 1\right )} - \sqrt {x^{3} - 1} {\left (27^{\frac {3}{4}} \sqrt {2} {\left (-i \, x^{2} - 4 i \, x + 2 i\right )} + 9 \cdot 27^{\frac {1}{4}} \sqrt {2} {\left (i \, x^{2} + 2 i\right )}\right )} - 36 \, x + 36\right )}}{x^{4} - 4 \, x^{3} + 8 \, x + 4}\right ) \]

[In]

integrate((x^2+2)/(x^2-2*x-2)/(x^3-1)^(1/2),x, algorithm="fricas")

[Out]

-1/108*27^(3/4)*sqrt(2)*log(2*(9*x^4 + 18*x^3 + 54*x^2 + 36*sqrt(3)*(x^3 - 1) + sqrt(x^3 - 1)*(27^(3/4)*sqrt(2
)*(x^2 + 4*x - 2) + 9*27^(1/4)*sqrt(2)*(x^2 + 2)) - 36*x + 36)/(x^4 - 4*x^3 + 8*x + 4)) + 1/108*27^(3/4)*sqrt(
2)*log(2*(9*x^4 + 18*x^3 + 54*x^2 + 36*sqrt(3)*(x^3 - 1) - sqrt(x^3 - 1)*(27^(3/4)*sqrt(2)*(x^2 + 4*x - 2) + 9
*27^(1/4)*sqrt(2)*(x^2 + 2)) - 36*x + 36)/(x^4 - 4*x^3 + 8*x + 4)) + 1/108*I*27^(3/4)*sqrt(2)*log(2*(9*x^4 + 1
8*x^3 + 54*x^2 - 36*sqrt(3)*(x^3 - 1) - sqrt(x^3 - 1)*(27^(3/4)*sqrt(2)*(I*x^2 + 4*I*x - 2*I) + 9*27^(1/4)*sqr
t(2)*(-I*x^2 - 2*I)) - 36*x + 36)/(x^4 - 4*x^3 + 8*x + 4)) - 1/108*I*27^(3/4)*sqrt(2)*log(2*(9*x^4 + 18*x^3 +
54*x^2 - 36*sqrt(3)*(x^3 - 1) - sqrt(x^3 - 1)*(27^(3/4)*sqrt(2)*(-I*x^2 - 4*I*x + 2*I) + 9*27^(1/4)*sqrt(2)*(I
*x^2 + 2*I)) - 36*x + 36)/(x^4 - 4*x^3 + 8*x + 4))

Sympy [F]

\[ \int \frac {2+x^2}{\left (-2-2 x+x^2\right ) \sqrt {-1+x^3}} \, dx=\int \frac {x^{2} + 2}{\sqrt {\left (x - 1\right ) \left (x^{2} + x + 1\right )} \left (x^{2} - 2 x - 2\right )}\, dx \]

[In]

integrate((x**2+2)/(x**2-2*x-2)/(x**3-1)**(1/2),x)

[Out]

Integral((x**2 + 2)/(sqrt((x - 1)*(x**2 + x + 1))*(x**2 - 2*x - 2)), x)

Maxima [F]

\[ \int \frac {2+x^2}{\left (-2-2 x+x^2\right ) \sqrt {-1+x^3}} \, dx=\int { \frac {x^{2} + 2}{\sqrt {x^{3} - 1} {\left (x^{2} - 2 \, x - 2\right )}} \,d x } \]

[In]

integrate((x^2+2)/(x^2-2*x-2)/(x^3-1)^(1/2),x, algorithm="maxima")

[Out]

integrate((x^2 + 2)/(sqrt(x^3 - 1)*(x^2 - 2*x - 2)), x)

Giac [F]

\[ \int \frac {2+x^2}{\left (-2-2 x+x^2\right ) \sqrt {-1+x^3}} \, dx=\int { \frac {x^{2} + 2}{\sqrt {x^{3} - 1} {\left (x^{2} - 2 \, x - 2\right )}} \,d x } \]

[In]

integrate((x^2+2)/(x^2-2*x-2)/(x^3-1)^(1/2),x, algorithm="giac")

[Out]

integrate((x^2 + 2)/(sqrt(x^3 - 1)*(x^2 - 2*x - 2)), x)

Mupad [B] (verification not implemented)

Time = 5.94 (sec) , antiderivative size = 509, normalized size of antiderivative = 5.72 \[ \int \frac {2+x^2}{\left (-2-2 x+x^2\right ) \sqrt {-1+x^3}} \, dx=-\frac {2\,\left (\frac {3}{2}+\frac {\sqrt {3}\,1{}\mathrm {i}}{2}\right )\,\sqrt {-\frac {x+\frac {1}{2}-\frac {\sqrt {3}\,1{}\mathrm {i}}{2}}{-\frac {3}{2}+\frac {\sqrt {3}\,1{}\mathrm {i}}{2}}}\,\sqrt {\frac {x+\frac {1}{2}+\frac {\sqrt {3}\,1{}\mathrm {i}}{2}}{\frac {3}{2}+\frac {\sqrt {3}\,1{}\mathrm {i}}{2}}}\,\sqrt {-\frac {x-1}{\frac {3}{2}+\frac {\sqrt {3}\,1{}\mathrm {i}}{2}}}\,\mathrm {F}\left (\mathrm {asin}\left (\sqrt {-\frac {x-1}{\frac {3}{2}+\frac {\sqrt {3}\,1{}\mathrm {i}}{2}}}\right )\middle |-\frac {\frac {3}{2}+\frac {\sqrt {3}\,1{}\mathrm {i}}{2}}{-\frac {3}{2}+\frac {\sqrt {3}\,1{}\mathrm {i}}{2}}\right )}{\sqrt {x^3+\left (-\left (-\frac {1}{2}+\frac {\sqrt {3}\,1{}\mathrm {i}}{2}\right )\,\left (\frac {1}{2}+\frac {\sqrt {3}\,1{}\mathrm {i}}{2}\right )-1\right )\,x+\left (-\frac {1}{2}+\frac {\sqrt {3}\,1{}\mathrm {i}}{2}\right )\,\left (\frac {1}{2}+\frac {\sqrt {3}\,1{}\mathrm {i}}{2}\right )}}-\frac {\left (2\,\sqrt {3}-6\right )\,\left (\frac {3}{2}+\frac {\sqrt {3}\,1{}\mathrm {i}}{2}\right )\,\sqrt {-\frac {x+\frac {1}{2}-\frac {\sqrt {3}\,1{}\mathrm {i}}{2}}{-\frac {3}{2}+\frac {\sqrt {3}\,1{}\mathrm {i}}{2}}}\,\sqrt {\frac {x+\frac {1}{2}+\frac {\sqrt {3}\,1{}\mathrm {i}}{2}}{\frac {3}{2}+\frac {\sqrt {3}\,1{}\mathrm {i}}{2}}}\,\sqrt {-\frac {x-1}{\frac {3}{2}+\frac {\sqrt {3}\,1{}\mathrm {i}}{2}}}\,\Pi \left (\frac {\sqrt {3}\,\left (\frac {3}{2}+\frac {\sqrt {3}\,1{}\mathrm {i}}{2}\right )}{3};\mathrm {asin}\left (\sqrt {-\frac {x-1}{\frac {3}{2}+\frac {\sqrt {3}\,1{}\mathrm {i}}{2}}}\right )\middle |-\frac {\frac {3}{2}+\frac {\sqrt {3}\,1{}\mathrm {i}}{2}}{-\frac {3}{2}+\frac {\sqrt {3}\,1{}\mathrm {i}}{2}}\right )}{3\,\sqrt {x^3+\left (-\left (-\frac {1}{2}+\frac {\sqrt {3}\,1{}\mathrm {i}}{2}\right )\,\left (\frac {1}{2}+\frac {\sqrt {3}\,1{}\mathrm {i}}{2}\right )-1\right )\,x+\left (-\frac {1}{2}+\frac {\sqrt {3}\,1{}\mathrm {i}}{2}\right )\,\left (\frac {1}{2}+\frac {\sqrt {3}\,1{}\mathrm {i}}{2}\right )}}+\frac {\left (2\,\sqrt {3}+6\right )\,\left (\frac {3}{2}+\frac {\sqrt {3}\,1{}\mathrm {i}}{2}\right )\,\sqrt {-\frac {x+\frac {1}{2}-\frac {\sqrt {3}\,1{}\mathrm {i}}{2}}{-\frac {3}{2}+\frac {\sqrt {3}\,1{}\mathrm {i}}{2}}}\,\sqrt {\frac {x+\frac {1}{2}+\frac {\sqrt {3}\,1{}\mathrm {i}}{2}}{\frac {3}{2}+\frac {\sqrt {3}\,1{}\mathrm {i}}{2}}}\,\sqrt {-\frac {x-1}{\frac {3}{2}+\frac {\sqrt {3}\,1{}\mathrm {i}}{2}}}\,\Pi \left (-\frac {\sqrt {3}\,\left (\frac {3}{2}+\frac {\sqrt {3}\,1{}\mathrm {i}}{2}\right )}{3};\mathrm {asin}\left (\sqrt {-\frac {x-1}{\frac {3}{2}+\frac {\sqrt {3}\,1{}\mathrm {i}}{2}}}\right )\middle |-\frac {\frac {3}{2}+\frac {\sqrt {3}\,1{}\mathrm {i}}{2}}{-\frac {3}{2}+\frac {\sqrt {3}\,1{}\mathrm {i}}{2}}\right )}{3\,\sqrt {x^3+\left (-\left (-\frac {1}{2}+\frac {\sqrt {3}\,1{}\mathrm {i}}{2}\right )\,\left (\frac {1}{2}+\frac {\sqrt {3}\,1{}\mathrm {i}}{2}\right )-1\right )\,x+\left (-\frac {1}{2}+\frac {\sqrt {3}\,1{}\mathrm {i}}{2}\right )\,\left (\frac {1}{2}+\frac {\sqrt {3}\,1{}\mathrm {i}}{2}\right )}} \]

[In]

int(-(x^2 + 2)/((x^3 - 1)^(1/2)*(2*x - x^2 + 2)),x)

[Out]

((2*3^(1/2) + 6)*((3^(1/2)*1i)/2 + 3/2)*(-(x - (3^(1/2)*1i)/2 + 1/2)/((3^(1/2)*1i)/2 - 3/2))^(1/2)*((x + (3^(1
/2)*1i)/2 + 1/2)/((3^(1/2)*1i)/2 + 3/2))^(1/2)*(-(x - 1)/((3^(1/2)*1i)/2 + 3/2))^(1/2)*ellipticPi(-(3^(1/2)*((
3^(1/2)*1i)/2 + 3/2))/3, asin((-(x - 1)/((3^(1/2)*1i)/2 + 3/2))^(1/2)), -((3^(1/2)*1i)/2 + 3/2)/((3^(1/2)*1i)/
2 - 3/2)))/(3*(((3^(1/2)*1i)/2 - 1/2)*((3^(1/2)*1i)/2 + 1/2) - x*(((3^(1/2)*1i)/2 - 1/2)*((3^(1/2)*1i)/2 + 1/2
) + 1) + x^3)^(1/2)) - ((2*3^(1/2) - 6)*((3^(1/2)*1i)/2 + 3/2)*(-(x - (3^(1/2)*1i)/2 + 1/2)/((3^(1/2)*1i)/2 -
3/2))^(1/2)*((x + (3^(1/2)*1i)/2 + 1/2)/((3^(1/2)*1i)/2 + 3/2))^(1/2)*(-(x - 1)/((3^(1/2)*1i)/2 + 3/2))^(1/2)*
ellipticPi((3^(1/2)*((3^(1/2)*1i)/2 + 3/2))/3, asin((-(x - 1)/((3^(1/2)*1i)/2 + 3/2))^(1/2)), -((3^(1/2)*1i)/2
 + 3/2)/((3^(1/2)*1i)/2 - 3/2)))/(3*(((3^(1/2)*1i)/2 - 1/2)*((3^(1/2)*1i)/2 + 1/2) - x*(((3^(1/2)*1i)/2 - 1/2)
*((3^(1/2)*1i)/2 + 1/2) + 1) + x^3)^(1/2)) - (2*((3^(1/2)*1i)/2 + 3/2)*(-(x - (3^(1/2)*1i)/2 + 1/2)/((3^(1/2)*
1i)/2 - 3/2))^(1/2)*((x + (3^(1/2)*1i)/2 + 1/2)/((3^(1/2)*1i)/2 + 3/2))^(1/2)*(-(x - 1)/((3^(1/2)*1i)/2 + 3/2)
)^(1/2)*ellipticF(asin((-(x - 1)/((3^(1/2)*1i)/2 + 3/2))^(1/2)), -((3^(1/2)*1i)/2 + 3/2)/((3^(1/2)*1i)/2 - 3/2
)))/(((3^(1/2)*1i)/2 - 1/2)*((3^(1/2)*1i)/2 + 1/2) - x*(((3^(1/2)*1i)/2 - 1/2)*((3^(1/2)*1i)/2 + 1/2) + 1) + x
^3)^(1/2)