\(\int \frac {x^2}{\sqrt {(1-x^2) (1-k^2 x^2)} (-1+k^2 x^4)} \, dx\) [1306]

   Optimal result
   Rubi [A] (verified)
   Mathematica [A] (verified)
   Maple [A] (verified)
   Fricas [A] (verification not implemented)
   Sympy [F]
   Maxima [F]
   Giac [F]
   Mupad [F(-1)]

Optimal result

Integrand size = 37, antiderivative size = 94 \[ \int \frac {x^2}{\sqrt {\left (1-x^2\right ) \left (1-k^2 x^2\right )} \left (-1+k^2 x^4\right )} \, dx=-\frac {\arctan \left (\frac {(-1+k) x}{\sqrt {1+\left (-1-k^2\right ) x^2+k^2 x^4}}\right )}{4 (-1+k) k}+\frac {\arctan \left (\frac {(1+k) x}{1+k x^2+\sqrt {1+\left (-1-k^2\right ) x^2+k^2 x^4}}\right )}{2 k (1+k)} \]

[Out]

-1/4*arctan((-1+k)*x/(1+(-k^2-1)*x^2+k^2*x^4)^(1/2))/(-1+k)/k+1/2*arctan((1+k)*x/(1+k*x^2+(1+(-k^2-1)*x^2+k^2*
x^4)^(1/2)))/k/(1+k)

Rubi [A] (verified)

Time = 0.55 (sec) , antiderivative size = 87, normalized size of antiderivative = 0.93, number of steps used = 11, number of rules used = 7, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.189, Rules used = {1976, 6857, 1224, 1117, 1712, 210, 209} \[ \int \frac {x^2}{\sqrt {\left (1-x^2\right ) \left (1-k^2 x^2\right )} \left (-1+k^2 x^4\right )} \, dx=\frac {\arctan \left (\frac {(k+1) x}{\sqrt {k^2 x^4-\left (k^2+1\right ) x^2+1}}\right )}{4 k (k+1)}-\frac {\arctan \left (\frac {(1-k) x}{\sqrt {k^2 x^4-\left (k^2+1\right ) x^2+1}}\right )}{4 (1-k) k} \]

[In]

Int[x^2/(Sqrt[(1 - x^2)*(1 - k^2*x^2)]*(-1 + k^2*x^4)),x]

[Out]

-1/4*ArcTan[((1 - k)*x)/Sqrt[1 - (1 + k^2)*x^2 + k^2*x^4]]/((1 - k)*k) + ArcTan[((1 + k)*x)/Sqrt[1 - (1 + k^2)
*x^2 + k^2*x^4]]/(4*k*(1 + k))

Rule 209

Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> Simp[(1/(Rt[a, 2]*Rt[b, 2]))*ArcTan[Rt[b, 2]*(x/Rt[a, 2])], x] /;
 FreeQ[{a, b}, x] && PosQ[a/b] && (GtQ[a, 0] || GtQ[b, 0])

Rule 210

Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> Simp[(-(Rt[-a, 2]*Rt[-b, 2])^(-1))*ArcTan[Rt[-b, 2]*(x/Rt[-a, 2])
], x] /; FreeQ[{a, b}, x] && PosQ[a/b] && (LtQ[a, 0] || LtQ[b, 0])

Rule 1117

Int[1/Sqrt[(a_) + (b_.)*(x_)^2 + (c_.)*(x_)^4], x_Symbol] :> With[{q = Rt[c/a, 4]}, Simp[(1 + q^2*x^2)*(Sqrt[(
a + b*x^2 + c*x^4)/(a*(1 + q^2*x^2)^2)]/(2*q*Sqrt[a + b*x^2 + c*x^4]))*EllipticF[2*ArcTan[q*x], 1/2 - b*(q^2/(
4*c))], x]] /; FreeQ[{a, b, c}, x] && NeQ[b^2 - 4*a*c, 0] && PosQ[c/a]

Rule 1224

Int[1/(((d_) + (e_.)*(x_)^2)*Sqrt[(a_) + (b_.)*(x_)^2 + (c_.)*(x_)^4]), x_Symbol] :> Dist[1/(2*d), Int[1/Sqrt[
a + b*x^2 + c*x^4], x], x] + Dist[1/(2*d), Int[(d - e*x^2)/((d + e*x^2)*Sqrt[a + b*x^2 + c*x^4]), x], x] /; Fr
eeQ[{a, b, c, d, e}, x] && NeQ[b^2 - 4*a*c, 0] && NeQ[c*d^2 - b*d*e + a*e^2, 0] && EqQ[c*d^2 - a*e^2, 0]

Rule 1712

Int[((A_) + (B_.)*(x_)^2)/(((d_) + (e_.)*(x_)^2)*Sqrt[(a_) + (b_.)*(x_)^2 + (c_.)*(x_)^4]), x_Symbol] :> Dist[
A, Subst[Int[1/(d - (b*d - 2*a*e)*x^2), x], x, x/Sqrt[a + b*x^2 + c*x^4]], x] /; FreeQ[{a, b, c, d, e, A, B},
x] && NeQ[b^2 - 4*a*c, 0] && NeQ[c*d^2 - b*d*e + a*e^2, 0] && EqQ[c*d^2 - a*e^2, 0] && EqQ[B*d + A*e, 0]

Rule 1976

Int[(u_.)*((e_.)*((a_.) + (b_.)*(x_)^(n_.))*((c_) + (d_.)*(x_)^(n_.)))^(p_), x_Symbol] :> Int[u*(a*c*e + (b*c
+ a*d)*e*x^n + b*d*e*x^(2*n))^p, x] /; FreeQ[{a, b, c, d, e, n, p}, x]

Rule 6857

Int[(u_)/((a_) + (b_.)*(x_)^(n_)), x_Symbol] :> With[{v = RationalFunctionExpand[u/(a + b*x^n), x]}, Int[v, x]
 /; SumQ[v]] /; FreeQ[{a, b}, x] && IGtQ[n, 0]

Rubi steps \begin{align*} \text {integral}& = \int \frac {x^2}{\left (-1+k^2 x^4\right ) \sqrt {1+\left (-1-k^2\right ) x^2+k^2 x^4}} \, dx \\ & = \int \left (\frac {1}{2 k \left (-1+k x^2\right ) \sqrt {1+\left (-1-k^2\right ) x^2+k^2 x^4}}+\frac {1}{2 k \left (1+k x^2\right ) \sqrt {1+\left (-1-k^2\right ) x^2+k^2 x^4}}\right ) \, dx \\ & = \frac {\int \frac {1}{\left (-1+k x^2\right ) \sqrt {1+\left (-1-k^2\right ) x^2+k^2 x^4}} \, dx}{2 k}+\frac {\int \frac {1}{\left (1+k x^2\right ) \sqrt {1+\left (-1-k^2\right ) x^2+k^2 x^4}} \, dx}{2 k} \\ & = -\frac {\int \frac {-1-k x^2}{\left (-1+k x^2\right ) \sqrt {1+\left (-1-k^2\right ) x^2+k^2 x^4}} \, dx}{4 k}+\frac {\int \frac {1-k x^2}{\left (1+k x^2\right ) \sqrt {1+\left (-1-k^2\right ) x^2+k^2 x^4}} \, dx}{4 k} \\ & = \frac {\text {Subst}\left (\int \frac {1}{1-\left (-1-2 k-k^2\right ) x^2} \, dx,x,\frac {x}{\sqrt {1+\left (-1-k^2\right ) x^2+k^2 x^4}}\right )}{4 k}+\frac {\text {Subst}\left (\int \frac {1}{-1-\left (1-2 k+k^2\right ) x^2} \, dx,x,\frac {x}{\sqrt {1+\left (-1-k^2\right ) x^2+k^2 x^4}}\right )}{4 k} \\ & = -\frac {\arctan \left (\frac {(1-k) x}{\sqrt {1-\left (1+k^2\right ) x^2+k^2 x^4}}\right )}{4 (1-k) k}+\frac {\arctan \left (\frac {(1+k) x}{\sqrt {1-\left (1+k^2\right ) x^2+k^2 x^4}}\right )}{4 k (1+k)} \\ \end{align*}

Mathematica [A] (verified)

Time = 5.09 (sec) , antiderivative size = 81, normalized size of antiderivative = 0.86 \[ \int \frac {x^2}{\sqrt {\left (1-x^2\right ) \left (1-k^2 x^2\right )} \left (-1+k^2 x^4\right )} \, dx=\frac {-\frac {\arctan \left (\frac {(-1+k) x}{\sqrt {\left (-1+x^2\right ) \left (-1+k^2 x^2\right )}}\right )}{-1+k}+\frac {2 \arctan \left (\frac {(1+k) x}{1+k x^2+\sqrt {\left (-1+x^2\right ) \left (-1+k^2 x^2\right )}}\right )}{1+k}}{4 k} \]

[In]

Integrate[x^2/(Sqrt[(1 - x^2)*(1 - k^2*x^2)]*(-1 + k^2*x^4)),x]

[Out]

(-(ArcTan[((-1 + k)*x)/Sqrt[(-1 + x^2)*(-1 + k^2*x^2)]]/(-1 + k)) + (2*ArcTan[((1 + k)*x)/(1 + k*x^2 + Sqrt[(-
1 + x^2)*(-1 + k^2*x^2)])])/(1 + k))/(4*k)

Maple [A] (verified)

Time = 3.52 (sec) , antiderivative size = 93, normalized size of antiderivative = 0.99

method result size
elliptic \(\frac {\left (\frac {\sqrt {2}\, \arctan \left (\frac {\sqrt {\left (-x^{2}+1\right ) \left (-k^{2} x^{2}+1\right )}}{x \left (-1+k \right )}\right )}{4 k \left (-1+k \right )}-\frac {\sqrt {2}\, \arctan \left (\frac {\sqrt {\left (-x^{2}+1\right ) \left (-k^{2} x^{2}+1\right )}}{x \left (1+k \right )}\right )}{4 k \left (1+k \right )}\right ) \sqrt {2}}{2}\) \(93\)
default \(\frac {-\frac {\sqrt {-\left (1+k \right )^{2}}\, \ln \left (\frac {\sqrt {-\left (-1+k \right )^{2}}\, \sqrt {\left (x^{2}-1\right ) \left (k^{2} x^{2}-1\right )}-2 k^{\frac {3}{2}} x^{2}-2 \sqrt {k}+\left (-k^{2}-2 k -1\right ) x}{1+2 \sqrt {k}\, x +k \,x^{2}}\right )}{2}-\frac {\sqrt {-\left (1+k \right )^{2}}\, \ln \left (\frac {\sqrt {-\left (-1+k \right )^{2}}\, \sqrt {\left (x^{2}-1\right ) \left (k^{2} x^{2}-1\right )}+2 k^{\frac {3}{2}} x^{2}+2 \sqrt {k}+\left (-k^{2}-2 k -1\right ) x}{1-2 \sqrt {k}\, x +k \,x^{2}}\right )}{2}+\sqrt {-\left (-1+k \right )^{2}}\, \ln \left (\frac {\sqrt {-\left (1+k \right )^{2}}\, \sqrt {\left (x^{2}-1\right ) \left (k^{2} x^{2}-1\right )}-x \left (1+k \right )^{2}}{k \,x^{2}+1}\right )+\ln \left (2\right ) \left (\sqrt {-\left (-1+k \right )^{2}}-\sqrt {-\left (1+k \right )^{2}}\right )}{4 \sqrt {-\left (1+k \right )^{2}}\, \sqrt {-\left (-1+k \right )^{2}}\, k}\) \(268\)
pseudoelliptic \(\frac {-\frac {\sqrt {-\left (1+k \right )^{2}}\, \ln \left (\frac {\sqrt {-\left (-1+k \right )^{2}}\, \sqrt {\left (x^{2}-1\right ) \left (k^{2} x^{2}-1\right )}-2 k^{\frac {3}{2}} x^{2}-2 \sqrt {k}+\left (-k^{2}-2 k -1\right ) x}{1+2 \sqrt {k}\, x +k \,x^{2}}\right )}{2}-\frac {\sqrt {-\left (1+k \right )^{2}}\, \ln \left (\frac {\sqrt {-\left (-1+k \right )^{2}}\, \sqrt {\left (x^{2}-1\right ) \left (k^{2} x^{2}-1\right )}+2 k^{\frac {3}{2}} x^{2}+2 \sqrt {k}+\left (-k^{2}-2 k -1\right ) x}{1-2 \sqrt {k}\, x +k \,x^{2}}\right )}{2}+\sqrt {-\left (-1+k \right )^{2}}\, \ln \left (\frac {\sqrt {-\left (1+k \right )^{2}}\, \sqrt {\left (x^{2}-1\right ) \left (k^{2} x^{2}-1\right )}-x \left (1+k \right )^{2}}{k \,x^{2}+1}\right )+\ln \left (2\right ) \left (\sqrt {-\left (-1+k \right )^{2}}-\sqrt {-\left (1+k \right )^{2}}\right )}{4 \sqrt {-\left (1+k \right )^{2}}\, \sqrt {-\left (-1+k \right )^{2}}\, k}\) \(268\)

[In]

int(x^2/((-x^2+1)*(-k^2*x^2+1))^(1/2)/(k^2*x^4-1),x,method=_RETURNVERBOSE)

[Out]

1/2*(1/4/k*2^(1/2)/(-1+k)*arctan(((-x^2+1)*(-k^2*x^2+1))^(1/2)/x/(-1+k))-1/4/k*2^(1/2)/(1+k)*arctan(((-x^2+1)*
(-k^2*x^2+1))^(1/2)/x/(1+k)))*2^(1/2)

Fricas [A] (verification not implemented)

none

Time = 0.36 (sec) , antiderivative size = 83, normalized size of antiderivative = 0.88 \[ \int \frac {x^2}{\sqrt {\left (1-x^2\right ) \left (1-k^2 x^2\right )} \left (-1+k^2 x^4\right )} \, dx=-\frac {{\left (k - 1\right )} \arctan \left (\frac {\sqrt {k^{2} x^{4} - {\left (k^{2} + 1\right )} x^{2} + 1}}{{\left (k + 1\right )} x}\right ) - {\left (k + 1\right )} \arctan \left (\frac {\sqrt {k^{2} x^{4} - {\left (k^{2} + 1\right )} x^{2} + 1}}{{\left (k - 1\right )} x}\right )}{4 \, {\left (k^{3} - k\right )}} \]

[In]

integrate(x^2/((-x^2+1)*(-k^2*x^2+1))^(1/2)/(k^2*x^4-1),x, algorithm="fricas")

[Out]

-1/4*((k - 1)*arctan(sqrt(k^2*x^4 - (k^2 + 1)*x^2 + 1)/((k + 1)*x)) - (k + 1)*arctan(sqrt(k^2*x^4 - (k^2 + 1)*
x^2 + 1)/((k - 1)*x)))/(k^3 - k)

Sympy [F]

\[ \int \frac {x^2}{\sqrt {\left (1-x^2\right ) \left (1-k^2 x^2\right )} \left (-1+k^2 x^4\right )} \, dx=\int \frac {x^{2}}{\sqrt {\left (x - 1\right ) \left (x + 1\right ) \left (k x - 1\right ) \left (k x + 1\right )} \left (k x^{2} - 1\right ) \left (k x^{2} + 1\right )}\, dx \]

[In]

integrate(x**2/((-x**2+1)*(-k**2*x**2+1))**(1/2)/(k**2*x**4-1),x)

[Out]

Integral(x**2/(sqrt((x - 1)*(x + 1)*(k*x - 1)*(k*x + 1))*(k*x**2 - 1)*(k*x**2 + 1)), x)

Maxima [F]

\[ \int \frac {x^2}{\sqrt {\left (1-x^2\right ) \left (1-k^2 x^2\right )} \left (-1+k^2 x^4\right )} \, dx=\int { \frac {x^{2}}{{\left (k^{2} x^{4} - 1\right )} \sqrt {{\left (k^{2} x^{2} - 1\right )} {\left (x^{2} - 1\right )}}} \,d x } \]

[In]

integrate(x^2/((-x^2+1)*(-k^2*x^2+1))^(1/2)/(k^2*x^4-1),x, algorithm="maxima")

[Out]

integrate(x^2/((k^2*x^4 - 1)*sqrt((k^2*x^2 - 1)*(x^2 - 1))), x)

Giac [F]

\[ \int \frac {x^2}{\sqrt {\left (1-x^2\right ) \left (1-k^2 x^2\right )} \left (-1+k^2 x^4\right )} \, dx=\int { \frac {x^{2}}{{\left (k^{2} x^{4} - 1\right )} \sqrt {{\left (k^{2} x^{2} - 1\right )} {\left (x^{2} - 1\right )}}} \,d x } \]

[In]

integrate(x^2/((-x^2+1)*(-k^2*x^2+1))^(1/2)/(k^2*x^4-1),x, algorithm="giac")

[Out]

integrate(x^2/((k^2*x^4 - 1)*sqrt((k^2*x^2 - 1)*(x^2 - 1))), x)

Mupad [F(-1)]

Timed out. \[ \int \frac {x^2}{\sqrt {\left (1-x^2\right ) \left (1-k^2 x^2\right )} \left (-1+k^2 x^4\right )} \, dx=\int \frac {x^2}{\left (k^2\,x^4-1\right )\,\sqrt {\left (x^2-1\right )\,\left (k^2\,x^2-1\right )}} \,d x \]

[In]

int(x^2/((k^2*x^4 - 1)*((x^2 - 1)*(k^2*x^2 - 1))^(1/2)),x)

[Out]

int(x^2/((k^2*x^4 - 1)*((x^2 - 1)*(k^2*x^2 - 1))^(1/2)), x)