\(\int \frac {1}{x^4 \sqrt {-1+x^6}} \, dx\) [100]

   Optimal result
   Rubi [A] (verified)
   Mathematica [A] (verified)
   Maple [A] (verified)
   Fricas [A] (verification not implemented)
   Sympy [C] (verification not implemented)
   Maxima [A] (verification not implemented)
   Giac [A] (verification not implemented)
   Mupad [B] (verification not implemented)

Optimal result

Integrand size = 13, antiderivative size = 16 \[ \int \frac {1}{x^4 \sqrt {-1+x^6}} \, dx=\frac {\sqrt {-1+x^6}}{3 x^3} \]

[Out]

1/3*(x^6-1)^(1/2)/x^3

Rubi [A] (verified)

Time = 0.00 (sec) , antiderivative size = 16, normalized size of antiderivative = 1.00, number of steps used = 1, number of rules used = 1, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.077, Rules used = {270} \[ \int \frac {1}{x^4 \sqrt {-1+x^6}} \, dx=\frac {\sqrt {x^6-1}}{3 x^3} \]

[In]

Int[1/(x^4*Sqrt[-1 + x^6]),x]

[Out]

Sqrt[-1 + x^6]/(3*x^3)

Rule 270

Int[((c_.)*(x_))^(m_.)*((a_) + (b_.)*(x_)^(n_))^(p_), x_Symbol] :> Simp[(c*x)^(m + 1)*((a + b*x^n)^(p + 1)/(a*
c*(m + 1))), x] /; FreeQ[{a, b, c, m, n, p}, x] && EqQ[(m + 1)/n + p + 1, 0] && NeQ[m, -1]

Rubi steps \begin{align*} \text {integral}& = \frac {\sqrt {-1+x^6}}{3 x^3} \\ \end{align*}

Mathematica [A] (verified)

Time = 0.14 (sec) , antiderivative size = 16, normalized size of antiderivative = 1.00 \[ \int \frac {1}{x^4 \sqrt {-1+x^6}} \, dx=\frac {\sqrt {-1+x^6}}{3 x^3} \]

[In]

Integrate[1/(x^4*Sqrt[-1 + x^6]),x]

[Out]

Sqrt[-1 + x^6]/(3*x^3)

Maple [A] (verified)

Time = 0.80 (sec) , antiderivative size = 13, normalized size of antiderivative = 0.81

method result size
trager \(\frac {\sqrt {x^{6}-1}}{3 x^{3}}\) \(13\)
risch \(\frac {\sqrt {x^{6}-1}}{3 x^{3}}\) \(13\)
pseudoelliptic \(\frac {\sqrt {x^{6}-1}}{3 x^{3}}\) \(13\)
gosper \(\frac {\left (x -1\right ) \left (1+x \right ) \left (x^{2}+x +1\right ) \left (x^{2}-x +1\right )}{3 x^{3} \sqrt {x^{6}-1}}\) \(33\)
meijerg \(-\frac {\sqrt {-\operatorname {signum}\left (x^{6}-1\right )}\, \sqrt {-x^{6}+1}}{3 \sqrt {\operatorname {signum}\left (x^{6}-1\right )}\, x^{3}}\) \(33\)

[In]

int(1/x^4/(x^6-1)^(1/2),x,method=_RETURNVERBOSE)

[Out]

1/3*(x^6-1)^(1/2)/x^3

Fricas [A] (verification not implemented)

none

Time = 0.25 (sec) , antiderivative size = 16, normalized size of antiderivative = 1.00 \[ \int \frac {1}{x^4 \sqrt {-1+x^6}} \, dx=\frac {x^{3} + \sqrt {x^{6} - 1}}{3 \, x^{3}} \]

[In]

integrate(1/x^4/(x^6-1)^(1/2),x, algorithm="fricas")

[Out]

1/3*(x^3 + sqrt(x^6 - 1))/x^3

Sympy [C] (verification not implemented)

Result contains complex when optimal does not.

Time = 0.35 (sec) , antiderivative size = 29, normalized size of antiderivative = 1.81 \[ \int \frac {1}{x^4 \sqrt {-1+x^6}} \, dx=\begin {cases} \frac {i \sqrt {-1 + \frac {1}{x^{6}}}}{3} & \text {for}\: \frac {1}{\left |{x^{6}}\right |} > 1 \\\frac {\sqrt {1 - \frac {1}{x^{6}}}}{3} & \text {otherwise} \end {cases} \]

[In]

integrate(1/x**4/(x**6-1)**(1/2),x)

[Out]

Piecewise((I*sqrt(-1 + x**(-6))/3, 1/Abs(x**6) > 1), (sqrt(1 - 1/x**6)/3, True))

Maxima [A] (verification not implemented)

none

Time = 0.19 (sec) , antiderivative size = 12, normalized size of antiderivative = 0.75 \[ \int \frac {1}{x^4 \sqrt {-1+x^6}} \, dx=\frac {\sqrt {x^{6} - 1}}{3 \, x^{3}} \]

[In]

integrate(1/x^4/(x^6-1)^(1/2),x, algorithm="maxima")

[Out]

1/3*sqrt(x^6 - 1)/x^3

Giac [A] (verification not implemented)

none

Time = 0.29 (sec) , antiderivative size = 20, normalized size of antiderivative = 1.25 \[ \int \frac {1}{x^4 \sqrt {-1+x^6}} \, dx=\frac {\sqrt {-\frac {1}{x^{6}} + 1}}{3 \, \mathrm {sgn}\left (x\right )} - \frac {1}{3} \, \mathrm {sgn}\left (x\right ) \]

[In]

integrate(1/x^4/(x^6-1)^(1/2),x, algorithm="giac")

[Out]

1/3*sqrt(-1/x^6 + 1)/sgn(x) - 1/3*sgn(x)

Mupad [B] (verification not implemented)

Time = 5.15 (sec) , antiderivative size = 12, normalized size of antiderivative = 0.75 \[ \int \frac {1}{x^4 \sqrt {-1+x^6}} \, dx=\frac {\sqrt {x^6-1}}{3\,x^3} \]

[In]

int(1/(x^4*(x^6 - 1)^(1/2)),x)

[Out]

(x^6 - 1)^(1/2)/(3*x^3)