\(\int \frac {-b+2 a x^4}{\sqrt [4]{-b+a x^4} (-b+a x^8)} \, dx\) [1430]

   Optimal result
   Rubi [B] (verified)
   Mathematica [A] (verified)
   Maple [N/A] (verified)
   Fricas [F(-1)]
   Sympy [N/A]
   Maxima [N/A]
   Giac [N/A]
   Mupad [N/A]

Optimal result

Integrand size = 35, antiderivative size = 101 \[ \int \frac {-b+2 a x^4}{\sqrt [4]{-b+a x^4} \left (-b+a x^8\right )} \, dx=\frac {1}{8} \text {RootSum}\left [a^2-a b-2 a \text {$\#$1}^4+\text {$\#$1}^8\&,\frac {-a \log (x)+a \log \left (\sqrt [4]{-b+a x^4}-x \text {$\#$1}\right )-\log (x) \text {$\#$1}^4+\log \left (\sqrt [4]{-b+a x^4}-x \text {$\#$1}\right ) \text {$\#$1}^4}{a \text {$\#$1}-\text {$\#$1}^5}\&\right ] \]

[Out]

Unintegrable

Rubi [B] (verified)

Leaf count is larger than twice the leaf count of optimal. \(325\) vs. \(2(101)=202\).

Time = 0.39 (sec) , antiderivative size = 325, normalized size of antiderivative = 3.22, number of steps used = 10, number of rules used = 5, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.143, Rules used = {6857, 385, 218, 212, 209} \[ \int \frac {-b+2 a x^4}{\sqrt [4]{-b+a x^4} \left (-b+a x^8\right )} \, dx=-\frac {\left (2 \sqrt {a}-\sqrt {b}\right ) \arctan \left (\frac {\sqrt [8]{a} x \sqrt [4]{\sqrt {a}-\sqrt {b}}}{\sqrt [4]{a x^4-b}}\right )}{4 \sqrt [8]{a} \sqrt {b} \sqrt [4]{\sqrt {a}-\sqrt {b}}}+\frac {\left (2 \sqrt {a}+\sqrt {b}\right ) \arctan \left (\frac {\sqrt [8]{a} x \sqrt [4]{\sqrt {a}+\sqrt {b}}}{\sqrt [4]{a x^4-b}}\right )}{4 \sqrt [8]{a} \sqrt {b} \sqrt [4]{\sqrt {a}+\sqrt {b}}}-\frac {\left (2 \sqrt {a}-\sqrt {b}\right ) \text {arctanh}\left (\frac {\sqrt [8]{a} x \sqrt [4]{\sqrt {a}-\sqrt {b}}}{\sqrt [4]{a x^4-b}}\right )}{4 \sqrt [8]{a} \sqrt {b} \sqrt [4]{\sqrt {a}-\sqrt {b}}}+\frac {\left (2 \sqrt {a}+\sqrt {b}\right ) \text {arctanh}\left (\frac {\sqrt [8]{a} x \sqrt [4]{\sqrt {a}+\sqrt {b}}}{\sqrt [4]{a x^4-b}}\right )}{4 \sqrt [8]{a} \sqrt {b} \sqrt [4]{\sqrt {a}+\sqrt {b}}} \]

[In]

Int[(-b + 2*a*x^4)/((-b + a*x^4)^(1/4)*(-b + a*x^8)),x]

[Out]

-1/4*((2*Sqrt[a] - Sqrt[b])*ArcTan[(a^(1/8)*(Sqrt[a] - Sqrt[b])^(1/4)*x)/(-b + a*x^4)^(1/4)])/(a^(1/8)*(Sqrt[a
] - Sqrt[b])^(1/4)*Sqrt[b]) + ((2*Sqrt[a] + Sqrt[b])*ArcTan[(a^(1/8)*(Sqrt[a] + Sqrt[b])^(1/4)*x)/(-b + a*x^4)
^(1/4)])/(4*a^(1/8)*(Sqrt[a] + Sqrt[b])^(1/4)*Sqrt[b]) - ((2*Sqrt[a] - Sqrt[b])*ArcTanh[(a^(1/8)*(Sqrt[a] - Sq
rt[b])^(1/4)*x)/(-b + a*x^4)^(1/4)])/(4*a^(1/8)*(Sqrt[a] - Sqrt[b])^(1/4)*Sqrt[b]) + ((2*Sqrt[a] + Sqrt[b])*Ar
cTanh[(a^(1/8)*(Sqrt[a] + Sqrt[b])^(1/4)*x)/(-b + a*x^4)^(1/4)])/(4*a^(1/8)*(Sqrt[a] + Sqrt[b])^(1/4)*Sqrt[b])

Rule 209

Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> Simp[(1/(Rt[a, 2]*Rt[b, 2]))*ArcTan[Rt[b, 2]*(x/Rt[a, 2])], x] /;
 FreeQ[{a, b}, x] && PosQ[a/b] && (GtQ[a, 0] || GtQ[b, 0])

Rule 212

Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> Simp[(1/(Rt[a, 2]*Rt[-b, 2]))*ArcTanh[Rt[-b, 2]*(x/Rt[a, 2])], x]
 /; FreeQ[{a, b}, x] && NegQ[a/b] && (GtQ[a, 0] || LtQ[b, 0])

Rule 218

Int[((a_) + (b_.)*(x_)^4)^(-1), x_Symbol] :> With[{r = Numerator[Rt[-a/b, 2]], s = Denominator[Rt[-a/b, 2]]},
Dist[r/(2*a), Int[1/(r - s*x^2), x], x] + Dist[r/(2*a), Int[1/(r + s*x^2), x], x]] /; FreeQ[{a, b}, x] &&  !Gt
Q[a/b, 0]

Rule 385

Int[((a_) + (b_.)*(x_)^(n_))^(p_)/((c_) + (d_.)*(x_)^(n_)), x_Symbol] :> Subst[Int[1/(c - (b*c - a*d)*x^n), x]
, x, x/(a + b*x^n)^(1/n)] /; FreeQ[{a, b, c, d}, x] && NeQ[b*c - a*d, 0] && EqQ[n*p + 1, 0] && IntegerQ[n]

Rule 6857

Int[(u_)/((a_) + (b_.)*(x_)^(n_)), x_Symbol] :> With[{v = RationalFunctionExpand[u/(a + b*x^n), x]}, Int[v, x]
 /; SumQ[v]] /; FreeQ[{a, b}, x] && IGtQ[n, 0]

Rubi steps \begin{align*} \text {integral}& = \int \left (-\frac {2 a \sqrt {b}-\sqrt {a} b}{2 \sqrt {a} \sqrt {b} \left (\sqrt {b}-\sqrt {a} x^4\right ) \sqrt [4]{-b+a x^4}}+\frac {2 a \sqrt {b}+\sqrt {a} b}{2 \sqrt {a} \sqrt {b} \left (\sqrt {b}+\sqrt {a} x^4\right ) \sqrt [4]{-b+a x^4}}\right ) \, dx \\ & = -\left (\frac {1}{2} \left (2 \sqrt {a}-\sqrt {b}\right ) \int \frac {1}{\left (\sqrt {b}-\sqrt {a} x^4\right ) \sqrt [4]{-b+a x^4}} \, dx\right )+\frac {1}{2} \left (2 \sqrt {a}+\sqrt {b}\right ) \int \frac {1}{\left (\sqrt {b}+\sqrt {a} x^4\right ) \sqrt [4]{-b+a x^4}} \, dx \\ & = -\left (\frac {1}{2} \left (2 \sqrt {a}-\sqrt {b}\right ) \text {Subst}\left (\int \frac {1}{\sqrt {b}-\left (a \sqrt {b}-\sqrt {a} b\right ) x^4} \, dx,x,\frac {x}{\sqrt [4]{-b+a x^4}}\right )\right )+\frac {1}{2} \left (2 \sqrt {a}+\sqrt {b}\right ) \text {Subst}\left (\int \frac {1}{\sqrt {b}-\left (a \sqrt {b}+\sqrt {a} b\right ) x^4} \, dx,x,\frac {x}{\sqrt [4]{-b+a x^4}}\right ) \\ & = -\left (\frac {1}{4} \left (-1+\frac {2 \sqrt {a}}{\sqrt {b}}\right ) \text {Subst}\left (\int \frac {1}{1-\sqrt [4]{a} \sqrt {\sqrt {a}-\sqrt {b}} x^2} \, dx,x,\frac {x}{\sqrt [4]{-b+a x^4}}\right )\right )-\frac {1}{4} \left (-1+\frac {2 \sqrt {a}}{\sqrt {b}}\right ) \text {Subst}\left (\int \frac {1}{1+\sqrt [4]{a} \sqrt {\sqrt {a}-\sqrt {b}} x^2} \, dx,x,\frac {x}{\sqrt [4]{-b+a x^4}}\right )+\frac {1}{4} \left (1+\frac {2 \sqrt {a}}{\sqrt {b}}\right ) \text {Subst}\left (\int \frac {1}{1-\sqrt [4]{a} \sqrt {\sqrt {a}+\sqrt {b}} x^2} \, dx,x,\frac {x}{\sqrt [4]{-b+a x^4}}\right )+\frac {1}{4} \left (1+\frac {2 \sqrt {a}}{\sqrt {b}}\right ) \text {Subst}\left (\int \frac {1}{1+\sqrt [4]{a} \sqrt {\sqrt {a}+\sqrt {b}} x^2} \, dx,x,\frac {x}{\sqrt [4]{-b+a x^4}}\right ) \\ & = \frac {\left (1-\frac {2 \sqrt {a}}{\sqrt {b}}\right ) \arctan \left (\frac {\sqrt [8]{a} \sqrt [4]{\sqrt {a}-\sqrt {b}} x}{\sqrt [4]{-b+a x^4}}\right )}{4 \sqrt [8]{a} \sqrt [4]{\sqrt {a}-\sqrt {b}}}+\frac {\left (1+\frac {2 \sqrt {a}}{\sqrt {b}}\right ) \arctan \left (\frac {\sqrt [8]{a} \sqrt [4]{\sqrt {a}+\sqrt {b}} x}{\sqrt [4]{-b+a x^4}}\right )}{4 \sqrt [8]{a} \sqrt [4]{\sqrt {a}+\sqrt {b}}}+\frac {\left (1-\frac {2 \sqrt {a}}{\sqrt {b}}\right ) \text {arctanh}\left (\frac {\sqrt [8]{a} \sqrt [4]{\sqrt {a}-\sqrt {b}} x}{\sqrt [4]{-b+a x^4}}\right )}{4 \sqrt [8]{a} \sqrt [4]{\sqrt {a}-\sqrt {b}}}+\frac {\left (1+\frac {2 \sqrt {a}}{\sqrt {b}}\right ) \text {arctanh}\left (\frac {\sqrt [8]{a} \sqrt [4]{\sqrt {a}+\sqrt {b}} x}{\sqrt [4]{-b+a x^4}}\right )}{4 \sqrt [8]{a} \sqrt [4]{\sqrt {a}+\sqrt {b}}} \\ \end{align*}

Mathematica [A] (verified)

Time = 1.20 (sec) , antiderivative size = 100, normalized size of antiderivative = 0.99 \[ \int \frac {-b+2 a x^4}{\sqrt [4]{-b+a x^4} \left (-b+a x^8\right )} \, dx=\frac {1}{8} \text {RootSum}\left [a^2-a b-2 a \text {$\#$1}^4+\text {$\#$1}^8\&,\frac {a \log (x)-a \log \left (\sqrt [4]{-b+a x^4}-x \text {$\#$1}\right )+\log (x) \text {$\#$1}^4-\log \left (\sqrt [4]{-b+a x^4}-x \text {$\#$1}\right ) \text {$\#$1}^4}{-a \text {$\#$1}+\text {$\#$1}^5}\&\right ] \]

[In]

Integrate[(-b + 2*a*x^4)/((-b + a*x^4)^(1/4)*(-b + a*x^8)),x]

[Out]

RootSum[a^2 - a*b - 2*a*#1^4 + #1^8 & , (a*Log[x] - a*Log[(-b + a*x^4)^(1/4) - x*#1] + Log[x]*#1^4 - Log[(-b +
 a*x^4)^(1/4) - x*#1]*#1^4)/(-(a*#1) + #1^5) & ]/8

Maple [N/A] (verified)

Time = 0.18 (sec) , antiderivative size = 63, normalized size of antiderivative = 0.62

method result size
pseudoelliptic \(-\frac {\left (\munderset {\textit {\_R} =\operatorname {RootOf}\left (\textit {\_Z}^{8}-2 a \,\textit {\_Z}^{4}+a^{2}-a b \right )}{\sum }\frac {\left (\textit {\_R}^{4}+a \right ) \ln \left (\frac {-\textit {\_R} x +\left (a \,x^{4}-b \right )^{\frac {1}{4}}}{x}\right )}{\textit {\_R} \left (\textit {\_R}^{4}-a \right )}\right )}{8}\) \(63\)

[In]

int((2*a*x^4-b)/(a*x^4-b)^(1/4)/(a*x^8-b),x,method=_RETURNVERBOSE)

[Out]

-1/8*sum(1/_R*(_R^4+a)*ln((-_R*x+(a*x^4-b)^(1/4))/x)/(_R^4-a),_R=RootOf(_Z^8-2*_Z^4*a+a^2-a*b))

Fricas [F(-1)]

Timed out. \[ \int \frac {-b+2 a x^4}{\sqrt [4]{-b+a x^4} \left (-b+a x^8\right )} \, dx=\text {Timed out} \]

[In]

integrate((2*a*x^4-b)/(a*x^4-b)^(1/4)/(a*x^8-b),x, algorithm="fricas")

[Out]

Timed out

Sympy [N/A]

Not integrable

Time = 17.21 (sec) , antiderivative size = 26, normalized size of antiderivative = 0.26 \[ \int \frac {-b+2 a x^4}{\sqrt [4]{-b+a x^4} \left (-b+a x^8\right )} \, dx=\int \frac {2 a x^{4} - b}{\sqrt [4]{a x^{4} - b} \left (a x^{8} - b\right )}\, dx \]

[In]

integrate((2*a*x**4-b)/(a*x**4-b)**(1/4)/(a*x**8-b),x)

[Out]

Integral((2*a*x**4 - b)/((a*x**4 - b)**(1/4)*(a*x**8 - b)), x)

Maxima [N/A]

Not integrable

Time = 0.23 (sec) , antiderivative size = 35, normalized size of antiderivative = 0.35 \[ \int \frac {-b+2 a x^4}{\sqrt [4]{-b+a x^4} \left (-b+a x^8\right )} \, dx=\int { \frac {2 \, a x^{4} - b}{{\left (a x^{8} - b\right )} {\left (a x^{4} - b\right )}^{\frac {1}{4}}} \,d x } \]

[In]

integrate((2*a*x^4-b)/(a*x^4-b)^(1/4)/(a*x^8-b),x, algorithm="maxima")

[Out]

integrate((2*a*x^4 - b)/((a*x^8 - b)*(a*x^4 - b)^(1/4)), x)

Giac [N/A]

Not integrable

Time = 0.30 (sec) , antiderivative size = 35, normalized size of antiderivative = 0.35 \[ \int \frac {-b+2 a x^4}{\sqrt [4]{-b+a x^4} \left (-b+a x^8\right )} \, dx=\int { \frac {2 \, a x^{4} - b}{{\left (a x^{8} - b\right )} {\left (a x^{4} - b\right )}^{\frac {1}{4}}} \,d x } \]

[In]

integrate((2*a*x^4-b)/(a*x^4-b)^(1/4)/(a*x^8-b),x, algorithm="giac")

[Out]

integrate((2*a*x^4 - b)/((a*x^8 - b)*(a*x^4 - b)^(1/4)), x)

Mupad [N/A]

Not integrable

Time = 6.59 (sec) , antiderivative size = 32, normalized size of antiderivative = 0.32 \[ \int \frac {-b+2 a x^4}{\sqrt [4]{-b+a x^4} \left (-b+a x^8\right )} \, dx=\int \frac {b-2\,a\,x^4}{{\left (a\,x^4-b\right )}^{1/4}\,\left (b-a\,x^8\right )} \,d x \]

[In]

int((b - 2*a*x^4)/((a*x^4 - b)^(1/4)*(b - a*x^8)),x)

[Out]

int((b - 2*a*x^4)/((a*x^4 - b)^(1/4)*(b - a*x^8)), x)