\(\int \frac {x^4 (-2 b+a x^2)}{(-b+a x^2)^2 \sqrt [4]{-b+a x^2+c x^4}} \, dx\) [1559]

   Optimal result
   Rubi [F]
   Mathematica [A] (verified)
   Maple [A] (verified)
   Fricas [C] (verification not implemented)
   Sympy [F]
   Maxima [F]
   Giac [F]
   Mupad [F(-1)]

Optimal result

Integrand size = 42, antiderivative size = 107 \[ \int \frac {x^4 \left (-2 b+a x^2\right )}{\left (-b+a x^2\right )^2 \sqrt [4]{-b+a x^2+c x^4}} \, dx=-\frac {x \left (-b+a x^2+c x^4\right )^{3/4}}{2 c \left (b-a x^2\right )}-\frac {\arctan \left (\frac {\sqrt [4]{c} x}{\sqrt [4]{-b+a x^2+c x^4}}\right )}{4 c^{5/4}}-\frac {\text {arctanh}\left (\frac {\sqrt [4]{c} x}{\sqrt [4]{-b+a x^2+c x^4}}\right )}{4 c^{5/4}} \]

[Out]

-1/2*x*(c*x^4+a*x^2-b)^(3/4)/c/(-a*x^2+b)-1/4*arctan(c^(1/4)*x/(c*x^4+a*x^2-b)^(1/4))/c^(5/4)-1/4*arctanh(c^(1
/4)*x/(c*x^4+a*x^2-b)^(1/4))/c^(5/4)

Rubi [F]

\[ \int \frac {x^4 \left (-2 b+a x^2\right )}{\left (-b+a x^2\right )^2 \sqrt [4]{-b+a x^2+c x^4}} \, dx=\int \frac {x^4 \left (-2 b+a x^2\right )}{\left (-b+a x^2\right )^2 \sqrt [4]{-b+a x^2+c x^4}} \, dx \]

[In]

Int[(x^4*(-2*b + a*x^2))/((-b + a*x^2)^2*(-b + a*x^2 + c*x^4)^(1/4)),x]

[Out]

Defer[Int][(x^4*(-2*b + a*x^2))/((-b + a*x^2)^2*(-b + a*x^2 + c*x^4)^(1/4)), x]

Rubi steps \begin{align*} \text {integral}& = \int \frac {x^4 \left (-2 b+a x^2\right )}{\left (-b+a x^2\right )^2 \sqrt [4]{-b+a x^2+c x^4}} \, dx \\ \end{align*}

Mathematica [A] (verified)

Time = 0.97 (sec) , antiderivative size = 102, normalized size of antiderivative = 0.95 \[ \int \frac {x^4 \left (-2 b+a x^2\right )}{\left (-b+a x^2\right )^2 \sqrt [4]{-b+a x^2+c x^4}} \, dx=\frac {-\frac {2 \sqrt [4]{c} x \left (-b+a x^2+c x^4\right )^{3/4}}{b-a x^2}-\arctan \left (\frac {\sqrt [4]{c} x}{\sqrt [4]{-b+a x^2+c x^4}}\right )-\text {arctanh}\left (\frac {\sqrt [4]{c} x}{\sqrt [4]{-b+a x^2+c x^4}}\right )}{4 c^{5/4}} \]

[In]

Integrate[(x^4*(-2*b + a*x^2))/((-b + a*x^2)^2*(-b + a*x^2 + c*x^4)^(1/4)),x]

[Out]

((-2*c^(1/4)*x*(-b + a*x^2 + c*x^4)^(3/4))/(b - a*x^2) - ArcTan[(c^(1/4)*x)/(-b + a*x^2 + c*x^4)^(1/4)] - ArcT
anh[(c^(1/4)*x)/(-b + a*x^2 + c*x^4)^(1/4)])/(4*c^(5/4))

Maple [A] (verified)

Time = 0.70 (sec) , antiderivative size = 131, normalized size of antiderivative = 1.22

method result size
pseudoelliptic \(-\frac {-4 \left (c \,x^{4}+a \,x^{2}-b \right )^{\frac {3}{4}} x \,c^{\frac {1}{4}}+\left (\ln \left (\frac {-c^{\frac {1}{4}} x -\left (c \,x^{4}+a \,x^{2}-b \right )^{\frac {1}{4}}}{c^{\frac {1}{4}} x -\left (c \,x^{4}+a \,x^{2}-b \right )^{\frac {1}{4}}}\right )-2 \arctan \left (\frac {\left (c \,x^{4}+a \,x^{2}-b \right )^{\frac {1}{4}}}{c^{\frac {1}{4}} x}\right )\right ) \left (a \,x^{2}-b \right )}{c^{\frac {5}{4}} \left (8 a \,x^{2}-8 b \right )}\) \(131\)

[In]

int(x^4*(a*x^2-2*b)/(a*x^2-b)^2/(c*x^4+a*x^2-b)^(1/4),x,method=_RETURNVERBOSE)

[Out]

-1/c^(5/4)*(-4*(c*x^4+a*x^2-b)^(3/4)*x*c^(1/4)+(ln((-c^(1/4)*x-(c*x^4+a*x^2-b)^(1/4))/(c^(1/4)*x-(c*x^4+a*x^2-
b)^(1/4)))-2*arctan(1/c^(1/4)/x*(c*x^4+a*x^2-b)^(1/4)))*(a*x^2-b))/(8*a*x^2-8*b)

Fricas [C] (verification not implemented)

Result contains complex when optimal does not.

Time = 0.29 (sec) , antiderivative size = 239, normalized size of antiderivative = 2.23 \[ \int \frac {x^4 \left (-2 b+a x^2\right )}{\left (-b+a x^2\right )^2 \sqrt [4]{-b+a x^2+c x^4}} \, dx=-\frac {{\left (a c x^{2} - b c\right )} \frac {1}{c^{5}}^{\frac {1}{4}} \log \left (\frac {c^{4} \frac {1}{c^{5}}^{\frac {3}{4}} x + {\left (c x^{4} + a x^{2} - b\right )}^{\frac {1}{4}}}{x}\right ) - {\left (a c x^{2} - b c\right )} \frac {1}{c^{5}}^{\frac {1}{4}} \log \left (-\frac {c^{4} \frac {1}{c^{5}}^{\frac {3}{4}} x - {\left (c x^{4} + a x^{2} - b\right )}^{\frac {1}{4}}}{x}\right ) + {\left (-i \, a c x^{2} + i \, b c\right )} \frac {1}{c^{5}}^{\frac {1}{4}} \log \left (\frac {i \, c^{4} \frac {1}{c^{5}}^{\frac {3}{4}} x + {\left (c x^{4} + a x^{2} - b\right )}^{\frac {1}{4}}}{x}\right ) + {\left (i \, a c x^{2} - i \, b c\right )} \frac {1}{c^{5}}^{\frac {1}{4}} \log \left (\frac {-i \, c^{4} \frac {1}{c^{5}}^{\frac {3}{4}} x + {\left (c x^{4} + a x^{2} - b\right )}^{\frac {1}{4}}}{x}\right ) - 4 \, {\left (c x^{4} + a x^{2} - b\right )}^{\frac {3}{4}} x}{8 \, {\left (a c x^{2} - b c\right )}} \]

[In]

integrate(x^4*(a*x^2-2*b)/(a*x^2-b)^2/(c*x^4+a*x^2-b)^(1/4),x, algorithm="fricas")

[Out]

-1/8*((a*c*x^2 - b*c)*(c^(-5))^(1/4)*log((c^4*(c^(-5))^(3/4)*x + (c*x^4 + a*x^2 - b)^(1/4))/x) - (a*c*x^2 - b*
c)*(c^(-5))^(1/4)*log(-(c^4*(c^(-5))^(3/4)*x - (c*x^4 + a*x^2 - b)^(1/4))/x) + (-I*a*c*x^2 + I*b*c)*(c^(-5))^(
1/4)*log((I*c^4*(c^(-5))^(3/4)*x + (c*x^4 + a*x^2 - b)^(1/4))/x) + (I*a*c*x^2 - I*b*c)*(c^(-5))^(1/4)*log((-I*
c^4*(c^(-5))^(3/4)*x + (c*x^4 + a*x^2 - b)^(1/4))/x) - 4*(c*x^4 + a*x^2 - b)^(3/4)*x)/(a*c*x^2 - b*c)

Sympy [F]

\[ \int \frac {x^4 \left (-2 b+a x^2\right )}{\left (-b+a x^2\right )^2 \sqrt [4]{-b+a x^2+c x^4}} \, dx=\int \frac {x^{4} \left (a x^{2} - 2 b\right )}{\left (a x^{2} - b\right )^{2} \sqrt [4]{a x^{2} - b + c x^{4}}}\, dx \]

[In]

integrate(x**4*(a*x**2-2*b)/(a*x**2-b)**2/(c*x**4+a*x**2-b)**(1/4),x)

[Out]

Integral(x**4*(a*x**2 - 2*b)/((a*x**2 - b)**2*(a*x**2 - b + c*x**4)**(1/4)), x)

Maxima [F]

\[ \int \frac {x^4 \left (-2 b+a x^2\right )}{\left (-b+a x^2\right )^2 \sqrt [4]{-b+a x^2+c x^4}} \, dx=\int { \frac {{\left (a x^{2} - 2 \, b\right )} x^{4}}{{\left (c x^{4} + a x^{2} - b\right )}^{\frac {1}{4}} {\left (a x^{2} - b\right )}^{2}} \,d x } \]

[In]

integrate(x^4*(a*x^2-2*b)/(a*x^2-b)^2/(c*x^4+a*x^2-b)^(1/4),x, algorithm="maxima")

[Out]

integrate((a*x^2 - 2*b)*x^4/((c*x^4 + a*x^2 - b)^(1/4)*(a*x^2 - b)^2), x)

Giac [F]

\[ \int \frac {x^4 \left (-2 b+a x^2\right )}{\left (-b+a x^2\right )^2 \sqrt [4]{-b+a x^2+c x^4}} \, dx=\int { \frac {{\left (a x^{2} - 2 \, b\right )} x^{4}}{{\left (c x^{4} + a x^{2} - b\right )}^{\frac {1}{4}} {\left (a x^{2} - b\right )}^{2}} \,d x } \]

[In]

integrate(x^4*(a*x^2-2*b)/(a*x^2-b)^2/(c*x^4+a*x^2-b)^(1/4),x, algorithm="giac")

[Out]

integrate((a*x^2 - 2*b)*x^4/((c*x^4 + a*x^2 - b)^(1/4)*(a*x^2 - b)^2), x)

Mupad [F(-1)]

Timed out. \[ \int \frac {x^4 \left (-2 b+a x^2\right )}{\left (-b+a x^2\right )^2 \sqrt [4]{-b+a x^2+c x^4}} \, dx=-\int \frac {x^4\,\left (2\,b-a\,x^2\right )}{{\left (b-a\,x^2\right )}^2\,{\left (c\,x^4+a\,x^2-b\right )}^{1/4}} \,d x \]

[In]

int(-(x^4*(2*b - a*x^2))/((b - a*x^2)^2*(a*x^2 - b + c*x^4)^(1/4)),x)

[Out]

-int((x^4*(2*b - a*x^2))/((b - a*x^2)^2*(a*x^2 - b + c*x^4)^(1/4)), x)