\(\int x^7 \sqrt [3]{-1+x^3} \, dx\) [1585]

   Optimal result
   Rubi [A] (verified)
   Mathematica [A] (verified)
   Maple [C] (warning: unable to verify)
   Fricas [A] (verification not implemented)
   Sympy [C] (verification not implemented)
   Maxima [A] (verification not implemented)
   Giac [F]
   Mupad [F(-1)]

Optimal result

Integrand size = 13, antiderivative size = 109 \[ \int x^7 \sqrt [3]{-1+x^3} \, dx=\frac {1}{162} \sqrt [3]{-1+x^3} \left (-5 x^2-3 x^5+18 x^8\right )+\frac {5 \arctan \left (\frac {\sqrt {3} x}{x+2 \sqrt [3]{-1+x^3}}\right )}{81 \sqrt {3}}+\frac {5}{243} \log \left (-x+\sqrt [3]{-1+x^3}\right )-\frac {5}{486} \log \left (x^2+x \sqrt [3]{-1+x^3}+\left (-1+x^3\right )^{2/3}\right ) \]

[Out]

1/162*(x^3-1)^(1/3)*(18*x^8-3*x^5-5*x^2)+5/243*arctan(3^(1/2)*x/(x+2*(x^3-1)^(1/3)))*3^(1/2)+5/243*ln(-x+(x^3-
1)^(1/3))-5/486*ln(x^2+x*(x^3-1)^(1/3)+(x^3-1)^(2/3))

Rubi [A] (verified)

Time = 0.02 (sec) , antiderivative size = 97, normalized size of antiderivative = 0.89, number of steps used = 4, number of rules used = 3, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.231, Rules used = {285, 327, 337} \[ \int x^7 \sqrt [3]{-1+x^3} \, dx=\frac {5 \arctan \left (\frac {\frac {2 x}{\sqrt [3]{x^3-1}}+1}{\sqrt {3}}\right )}{81 \sqrt {3}}+\frac {5}{162} \log \left (x-\sqrt [3]{x^3-1}\right )+\frac {1}{9} \sqrt [3]{x^3-1} x^8-\frac {1}{54} \sqrt [3]{x^3-1} x^5-\frac {5}{162} \sqrt [3]{x^3-1} x^2 \]

[In]

Int[x^7*(-1 + x^3)^(1/3),x]

[Out]

(-5*x^2*(-1 + x^3)^(1/3))/162 - (x^5*(-1 + x^3)^(1/3))/54 + (x^8*(-1 + x^3)^(1/3))/9 + (5*ArcTan[(1 + (2*x)/(-
1 + x^3)^(1/3))/Sqrt[3]])/(81*Sqrt[3]) + (5*Log[x - (-1 + x^3)^(1/3)])/162

Rule 285

Int[((c_.)*(x_))^(m_.)*((a_) + (b_.)*(x_)^(n_))^(p_), x_Symbol] :> Simp[(c*x)^(m + 1)*((a + b*x^n)^p/(c*(m + n
*p + 1))), x] + Dist[a*n*(p/(m + n*p + 1)), Int[(c*x)^m*(a + b*x^n)^(p - 1), x], x] /; FreeQ[{a, b, c, m}, x]
&& IGtQ[n, 0] && GtQ[p, 0] && NeQ[m + n*p + 1, 0] && IntBinomialQ[a, b, c, n, m, p, x]

Rule 327

Int[((c_.)*(x_))^(m_)*((a_) + (b_.)*(x_)^(n_))^(p_), x_Symbol] :> Simp[c^(n - 1)*(c*x)^(m - n + 1)*((a + b*x^n
)^(p + 1)/(b*(m + n*p + 1))), x] - Dist[a*c^n*((m - n + 1)/(b*(m + n*p + 1))), Int[(c*x)^(m - n)*(a + b*x^n)^p
, x], x] /; FreeQ[{a, b, c, p}, x] && IGtQ[n, 0] && GtQ[m, n - 1] && NeQ[m + n*p + 1, 0] && IntBinomialQ[a, b,
 c, n, m, p, x]

Rule 337

Int[(x_)/((a_) + (b_.)*(x_)^3)^(2/3), x_Symbol] :> With[{q = Rt[b, 3]}, Simp[-ArcTan[(1 + 2*q*(x/(a + b*x^3)^(
1/3)))/Sqrt[3]]/(Sqrt[3]*q^2), x] - Simp[Log[q*x - (a + b*x^3)^(1/3)]/(2*q^2), x]] /; FreeQ[{a, b}, x]

Rubi steps \begin{align*} \text {integral}& = \frac {1}{9} x^8 \sqrt [3]{-1+x^3}-\frac {1}{9} \int \frac {x^7}{\left (-1+x^3\right )^{2/3}} \, dx \\ & = -\frac {1}{54} x^5 \sqrt [3]{-1+x^3}+\frac {1}{9} x^8 \sqrt [3]{-1+x^3}-\frac {5}{54} \int \frac {x^4}{\left (-1+x^3\right )^{2/3}} \, dx \\ & = -\frac {5}{162} x^2 \sqrt [3]{-1+x^3}-\frac {1}{54} x^5 \sqrt [3]{-1+x^3}+\frac {1}{9} x^8 \sqrt [3]{-1+x^3}-\frac {5}{81} \int \frac {x}{\left (-1+x^3\right )^{2/3}} \, dx \\ & = -\frac {5}{162} x^2 \sqrt [3]{-1+x^3}-\frac {1}{54} x^5 \sqrt [3]{-1+x^3}+\frac {1}{9} x^8 \sqrt [3]{-1+x^3}+\frac {5 \arctan \left (\frac {1+\frac {2 x}{\sqrt [3]{-1+x^3}}}{\sqrt {3}}\right )}{81 \sqrt {3}}+\frac {5}{162} \log \left (x-\sqrt [3]{-1+x^3}\right ) \\ \end{align*}

Mathematica [A] (verified)

Time = 0.24 (sec) , antiderivative size = 104, normalized size of antiderivative = 0.95 \[ \int x^7 \sqrt [3]{-1+x^3} \, dx=\frac {1}{486} \left (3 x^2 \sqrt [3]{-1+x^3} \left (-5-3 x^3+18 x^6\right )+10 \sqrt {3} \arctan \left (\frac {\sqrt {3} x}{x+2 \sqrt [3]{-1+x^3}}\right )+10 \log \left (-x+\sqrt [3]{-1+x^3}\right )-5 \log \left (x^2+x \sqrt [3]{-1+x^3}+\left (-1+x^3\right )^{2/3}\right )\right ) \]

[In]

Integrate[x^7*(-1 + x^3)^(1/3),x]

[Out]

(3*x^2*(-1 + x^3)^(1/3)*(-5 - 3*x^3 + 18*x^6) + 10*Sqrt[3]*ArcTan[(Sqrt[3]*x)/(x + 2*(-1 + x^3)^(1/3))] + 10*L
og[-x + (-1 + x^3)^(1/3)] - 5*Log[x^2 + x*(-1 + x^3)^(1/3) + (-1 + x^3)^(2/3)])/486

Maple [C] (warning: unable to verify)

Result contains higher order function than in optimal. Order 9 vs. order 3.

Time = 0.98 (sec) , antiderivative size = 33, normalized size of antiderivative = 0.30

method result size
meijerg \(\frac {\operatorname {signum}\left (x^{3}-1\right )^{\frac {1}{3}} x^{8} \operatorname {hypergeom}\left (\left [-\frac {1}{3}, \frac {8}{3}\right ], \left [\frac {11}{3}\right ], x^{3}\right )}{8 {\left (-\operatorname {signum}\left (x^{3}-1\right )\right )}^{\frac {1}{3}}}\) \(33\)
risch \(\frac {x^{2} \left (18 x^{6}-3 x^{3}-5\right ) \left (x^{3}-1\right )^{\frac {1}{3}}}{162}-\frac {5 {\left (-\operatorname {signum}\left (x^{3}-1\right )\right )}^{\frac {2}{3}} x^{2} \operatorname {hypergeom}\left (\left [\frac {2}{3}, \frac {2}{3}\right ], \left [\frac {5}{3}\right ], x^{3}\right )}{162 \operatorname {signum}\left (x^{3}-1\right )^{\frac {2}{3}}}\) \(58\)
pseudoelliptic \(\frac {-5 \ln \left (\frac {x^{2}+x \left (x^{3}-1\right )^{\frac {1}{3}}+\left (x^{3}-1\right )^{\frac {2}{3}}}{x^{2}}\right )-10 \sqrt {3}\, \arctan \left (\frac {\sqrt {3}\, \left (x +2 \left (x^{3}-1\right )^{\frac {1}{3}}\right )}{3 x}\right )+10 \ln \left (\frac {-x +\left (x^{3}-1\right )^{\frac {1}{3}}}{x}\right )+\left (54 x^{8}-9 x^{5}-15 x^{2}\right ) \left (x^{3}-1\right )^{\frac {1}{3}}}{486 \left (x^{2}+x \left (x^{3}-1\right )^{\frac {1}{3}}+\left (x^{3}-1\right )^{\frac {2}{3}}\right )^{3} {\left (x -\left (x^{3}-1\right )^{\frac {1}{3}}\right )}^{3}}\) \(133\)
trager \(\frac {x^{2} \left (18 x^{6}-3 x^{3}-5\right ) \left (x^{3}-1\right )^{\frac {1}{3}}}{162}+\frac {5 \operatorname {RootOf}\left (\textit {\_Z}^{2}+\textit {\_Z} +1\right ) \ln \left (\operatorname {RootOf}\left (\textit {\_Z}^{2}+\textit {\_Z} +1\right )^{2} x^{3}-3 \operatorname {RootOf}\left (\textit {\_Z}^{2}+\textit {\_Z} +1\right ) \left (x^{3}-1\right )^{\frac {2}{3}} x -3 \operatorname {RootOf}\left (\textit {\_Z}^{2}+\textit {\_Z} +1\right ) \left (x^{3}-1\right )^{\frac {1}{3}} x^{2}-2 \operatorname {RootOf}\left (\textit {\_Z}^{2}+\textit {\_Z} +1\right ) x^{3}+x^{3}+\operatorname {RootOf}\left (\textit {\_Z}^{2}+\textit {\_Z} +1\right )-1\right )}{243}-\frac {5 \ln \left (\operatorname {RootOf}\left (\textit {\_Z}^{2}+\textit {\_Z} +1\right )^{2} x^{3}+3 \operatorname {RootOf}\left (\textit {\_Z}^{2}+\textit {\_Z} +1\right ) \left (x^{3}-1\right )^{\frac {2}{3}} x +3 \operatorname {RootOf}\left (\textit {\_Z}^{2}+\textit {\_Z} +1\right ) \left (x^{3}-1\right )^{\frac {1}{3}} x^{2}+4 \operatorname {RootOf}\left (\textit {\_Z}^{2}+\textit {\_Z} +1\right ) x^{3}+3 x \left (x^{3}-1\right )^{\frac {2}{3}}+3 x^{2} \left (x^{3}-1\right )^{\frac {1}{3}}+4 x^{3}-\operatorname {RootOf}\left (\textit {\_Z}^{2}+\textit {\_Z} +1\right )-2\right ) \operatorname {RootOf}\left (\textit {\_Z}^{2}+\textit {\_Z} +1\right )}{243}-\frac {5 \ln \left (\operatorname {RootOf}\left (\textit {\_Z}^{2}+\textit {\_Z} +1\right )^{2} x^{3}+3 \operatorname {RootOf}\left (\textit {\_Z}^{2}+\textit {\_Z} +1\right ) \left (x^{3}-1\right )^{\frac {2}{3}} x +3 \operatorname {RootOf}\left (\textit {\_Z}^{2}+\textit {\_Z} +1\right ) \left (x^{3}-1\right )^{\frac {1}{3}} x^{2}+4 \operatorname {RootOf}\left (\textit {\_Z}^{2}+\textit {\_Z} +1\right ) x^{3}+3 x \left (x^{3}-1\right )^{\frac {2}{3}}+3 x^{2} \left (x^{3}-1\right )^{\frac {1}{3}}+4 x^{3}-\operatorname {RootOf}\left (\textit {\_Z}^{2}+\textit {\_Z} +1\right )-2\right )}{243}\) \(320\)

[In]

int(x^7*(x^3-1)^(1/3),x,method=_RETURNVERBOSE)

[Out]

1/8*signum(x^3-1)^(1/3)/(-signum(x^3-1))^(1/3)*x^8*hypergeom([-1/3,8/3],[11/3],x^3)

Fricas [A] (verification not implemented)

none

Time = 0.25 (sec) , antiderivative size = 101, normalized size of antiderivative = 0.93 \[ \int x^7 \sqrt [3]{-1+x^3} \, dx=-\frac {5}{243} \, \sqrt {3} \arctan \left (\frac {\sqrt {3} x + 2 \, \sqrt {3} {\left (x^{3} - 1\right )}^{\frac {1}{3}}}{3 \, x}\right ) + \frac {1}{162} \, {\left (18 \, x^{8} - 3 \, x^{5} - 5 \, x^{2}\right )} {\left (x^{3} - 1\right )}^{\frac {1}{3}} + \frac {5}{243} \, \log \left (-\frac {x - {\left (x^{3} - 1\right )}^{\frac {1}{3}}}{x}\right ) - \frac {5}{486} \, \log \left (\frac {x^{2} + {\left (x^{3} - 1\right )}^{\frac {1}{3}} x + {\left (x^{3} - 1\right )}^{\frac {2}{3}}}{x^{2}}\right ) \]

[In]

integrate(x^7*(x^3-1)^(1/3),x, algorithm="fricas")

[Out]

-5/243*sqrt(3)*arctan(1/3*(sqrt(3)*x + 2*sqrt(3)*(x^3 - 1)^(1/3))/x) + 1/162*(18*x^8 - 3*x^5 - 5*x^2)*(x^3 - 1
)^(1/3) + 5/243*log(-(x - (x^3 - 1)^(1/3))/x) - 5/486*log((x^2 + (x^3 - 1)^(1/3)*x + (x^3 - 1)^(2/3))/x^2)

Sympy [C] (verification not implemented)

Result contains complex when optimal does not.

Time = 3.56 (sec) , antiderivative size = 36, normalized size of antiderivative = 0.33 \[ \int x^7 \sqrt [3]{-1+x^3} \, dx=- \frac {x^{8} e^{- \frac {2 i \pi }{3}} \Gamma \left (\frac {8}{3}\right ) {{}_{2}F_{1}\left (\begin {matrix} - \frac {1}{3}, \frac {8}{3} \\ \frac {11}{3} \end {matrix}\middle | {x^{3}} \right )}}{3 \Gamma \left (\frac {11}{3}\right )} \]

[In]

integrate(x**7*(x**3-1)**(1/3),x)

[Out]

-x**8*exp(-2*I*pi/3)*gamma(8/3)*hyper((-1/3, 8/3), (11/3,), x**3)/(3*gamma(11/3))

Maxima [A] (verification not implemented)

none

Time = 0.27 (sec) , antiderivative size = 145, normalized size of antiderivative = 1.33 \[ \int x^7 \sqrt [3]{-1+x^3} \, dx=-\frac {5}{243} \, \sqrt {3} \arctan \left (\frac {1}{3} \, \sqrt {3} {\left (\frac {2 \, {\left (x^{3} - 1\right )}^{\frac {1}{3}}}{x} + 1\right )}\right ) - \frac {\frac {10 \, {\left (x^{3} - 1\right )}^{\frac {1}{3}}}{x} + \frac {13 \, {\left (x^{3} - 1\right )}^{\frac {4}{3}}}{x^{4}} - \frac {5 \, {\left (x^{3} - 1\right )}^{\frac {7}{3}}}{x^{7}}}{162 \, {\left (\frac {3 \, {\left (x^{3} - 1\right )}}{x^{3}} - \frac {3 \, {\left (x^{3} - 1\right )}^{2}}{x^{6}} + \frac {{\left (x^{3} - 1\right )}^{3}}{x^{9}} - 1\right )}} - \frac {5}{486} \, \log \left (\frac {{\left (x^{3} - 1\right )}^{\frac {1}{3}}}{x} + \frac {{\left (x^{3} - 1\right )}^{\frac {2}{3}}}{x^{2}} + 1\right ) + \frac {5}{243} \, \log \left (\frac {{\left (x^{3} - 1\right )}^{\frac {1}{3}}}{x} - 1\right ) \]

[In]

integrate(x^7*(x^3-1)^(1/3),x, algorithm="maxima")

[Out]

-5/243*sqrt(3)*arctan(1/3*sqrt(3)*(2*(x^3 - 1)^(1/3)/x + 1)) - 1/162*(10*(x^3 - 1)^(1/3)/x + 13*(x^3 - 1)^(4/3
)/x^4 - 5*(x^3 - 1)^(7/3)/x^7)/(3*(x^3 - 1)/x^3 - 3*(x^3 - 1)^2/x^6 + (x^3 - 1)^3/x^9 - 1) - 5/486*log((x^3 -
1)^(1/3)/x + (x^3 - 1)^(2/3)/x^2 + 1) + 5/243*log((x^3 - 1)^(1/3)/x - 1)

Giac [F]

\[ \int x^7 \sqrt [3]{-1+x^3} \, dx=\int { {\left (x^{3} - 1\right )}^{\frac {1}{3}} x^{7} \,d x } \]

[In]

integrate(x^7*(x^3-1)^(1/3),x, algorithm="giac")

[Out]

integrate((x^3 - 1)^(1/3)*x^7, x)

Mupad [F(-1)]

Timed out. \[ \int x^7 \sqrt [3]{-1+x^3} \, dx=\int x^7\,{\left (x^3-1\right )}^{1/3} \,d x \]

[In]

int(x^7*(x^3 - 1)^(1/3),x)

[Out]

int(x^7*(x^3 - 1)^(1/3), x)