\(\int \frac {\sqrt [3]{-1+x^6} (-1+2 x^6)}{x^9} \, dx\) [1597]

   Optimal result
   Rubi [A] (verified)
   Mathematica [A] (verified)
   Maple [C] (warning: unable to verify)
   Fricas [A] (verification not implemented)
   Sympy [C] (verification not implemented)
   Maxima [A] (verification not implemented)
   Giac [F]
   Mupad [F(-1)]

Optimal result

Integrand size = 20, antiderivative size = 109 \[ \int \frac {\sqrt [3]{-1+x^6} \left (-1+2 x^6\right )}{x^9} \, dx=\frac {\left (1-9 x^6\right ) \sqrt [3]{-1+x^6}}{8 x^8}-\frac {\arctan \left (\frac {\sqrt {3} x^2}{x^2+2 \sqrt [3]{-1+x^6}}\right )}{\sqrt {3}}-\frac {1}{3} \log \left (-x^2+\sqrt [3]{-1+x^6}\right )+\frac {1}{6} \log \left (x^4+x^2 \sqrt [3]{-1+x^6}+\left (-1+x^6\right )^{2/3}\right ) \]

[Out]

1/8*(-9*x^6+1)*(x^6-1)^(1/3)/x^8-1/3*arctan(3^(1/2)*x^2/(x^2+2*(x^6-1)^(1/3)))*3^(1/2)-1/3*ln(-x^2+(x^6-1)^(1/
3))+1/6*ln(x^4+x^2*(x^6-1)^(1/3)+(x^6-1)^(2/3))

Rubi [A] (verified)

Time = 0.02 (sec) , antiderivative size = 81, normalized size of antiderivative = 0.74, number of steps used = 4, number of rules used = 4, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.200, Rules used = {462, 281, 283, 337} \[ \int \frac {\sqrt [3]{-1+x^6} \left (-1+2 x^6\right )}{x^9} \, dx=-\frac {\arctan \left (\frac {\frac {2 x^2}{\sqrt [3]{x^6-1}}+1}{\sqrt {3}}\right )}{\sqrt {3}}-\frac {\left (x^6-1\right )^{4/3}}{8 x^8}-\frac {\sqrt [3]{x^6-1}}{x^2}-\frac {1}{2} \log \left (x^2-\sqrt [3]{x^6-1}\right ) \]

[In]

Int[((-1 + x^6)^(1/3)*(-1 + 2*x^6))/x^9,x]

[Out]

-((-1 + x^6)^(1/3)/x^2) - (-1 + x^6)^(4/3)/(8*x^8) - ArcTan[(1 + (2*x^2)/(-1 + x^6)^(1/3))/Sqrt[3]]/Sqrt[3] -
Log[x^2 - (-1 + x^6)^(1/3)]/2

Rule 281

Int[(x_)^(m_.)*((a_) + (b_.)*(x_)^(n_))^(p_), x_Symbol] :> With[{k = GCD[m + 1, n]}, Dist[1/k, Subst[Int[x^((m
 + 1)/k - 1)*(a + b*x^(n/k))^p, x], x, x^k], x] /; k != 1] /; FreeQ[{a, b, p}, x] && IGtQ[n, 0] && IntegerQ[m]

Rule 283

Int[((c_.)*(x_))^(m_.)*((a_) + (b_.)*(x_)^(n_))^(p_), x_Symbol] :> Simp[(c*x)^(m + 1)*((a + b*x^n)^p/(c*(m + 1
))), x] - Dist[b*n*(p/(c^n*(m + 1))), Int[(c*x)^(m + n)*(a + b*x^n)^(p - 1), x], x] /; FreeQ[{a, b, c}, x] &&
IGtQ[n, 0] && GtQ[p, 0] && LtQ[m, -1] &&  !ILtQ[(m + n*p + n + 1)/n, 0] && IntBinomialQ[a, b, c, n, m, p, x]

Rule 337

Int[(x_)/((a_) + (b_.)*(x_)^3)^(2/3), x_Symbol] :> With[{q = Rt[b, 3]}, Simp[-ArcTan[(1 + 2*q*(x/(a + b*x^3)^(
1/3)))/Sqrt[3]]/(Sqrt[3]*q^2), x] - Simp[Log[q*x - (a + b*x^3)^(1/3)]/(2*q^2), x]] /; FreeQ[{a, b}, x]

Rule 462

Int[((e_.)*(x_))^(m_.)*((a_) + (b_.)*(x_)^(n_))^(p_.)*((c_) + (d_.)*(x_)^(n_)), x_Symbol] :> Simp[c*(e*x)^(m +
 1)*((a + b*x^n)^(p + 1)/(a*e*(m + 1))), x] + Dist[d/e^n, Int[(e*x)^(m + n)*(a + b*x^n)^p, x], x] /; FreeQ[{a,
 b, c, d, e, m, n, p}, x] && NeQ[b*c - a*d, 0] && EqQ[m + n*(p + 1) + 1, 0] && (IntegerQ[n] || GtQ[e, 0]) && (
(GtQ[n, 0] && LtQ[m, -1]) || (LtQ[n, 0] && GtQ[m + n, -1]))

Rubi steps \begin{align*} \text {integral}& = -\frac {\left (-1+x^6\right )^{4/3}}{8 x^8}+2 \int \frac {\sqrt [3]{-1+x^6}}{x^3} \, dx \\ & = -\frac {\left (-1+x^6\right )^{4/3}}{8 x^8}+\text {Subst}\left (\int \frac {\sqrt [3]{-1+x^3}}{x^2} \, dx,x,x^2\right ) \\ & = -\frac {\sqrt [3]{-1+x^6}}{x^2}-\frac {\left (-1+x^6\right )^{4/3}}{8 x^8}+\text {Subst}\left (\int \frac {x}{\left (-1+x^3\right )^{2/3}} \, dx,x,x^2\right ) \\ & = -\frac {\sqrt [3]{-1+x^6}}{x^2}-\frac {\left (-1+x^6\right )^{4/3}}{8 x^8}-\frac {\arctan \left (\frac {1+\frac {2 x^2}{\sqrt [3]{-1+x^6}}}{\sqrt {3}}\right )}{\sqrt {3}}-\frac {1}{2} \log \left (x^2-\sqrt [3]{-1+x^6}\right ) \\ \end{align*}

Mathematica [A] (verified)

Time = 0.61 (sec) , antiderivative size = 109, normalized size of antiderivative = 1.00 \[ \int \frac {\sqrt [3]{-1+x^6} \left (-1+2 x^6\right )}{x^9} \, dx=\frac {\left (1-9 x^6\right ) \sqrt [3]{-1+x^6}}{8 x^8}-\frac {\arctan \left (\frac {\sqrt {3} x^2}{x^2+2 \sqrt [3]{-1+x^6}}\right )}{\sqrt {3}}-\frac {1}{3} \log \left (-x^2+\sqrt [3]{-1+x^6}\right )+\frac {1}{6} \log \left (x^4+x^2 \sqrt [3]{-1+x^6}+\left (-1+x^6\right )^{2/3}\right ) \]

[In]

Integrate[((-1 + x^6)^(1/3)*(-1 + 2*x^6))/x^9,x]

[Out]

((1 - 9*x^6)*(-1 + x^6)^(1/3))/(8*x^8) - ArcTan[(Sqrt[3]*x^2)/(x^2 + 2*(-1 + x^6)^(1/3))]/Sqrt[3] - Log[-x^2 +
 (-1 + x^6)^(1/3)]/3 + Log[x^4 + x^2*(-1 + x^6)^(1/3) + (-1 + x^6)^(2/3)]/6

Maple [C] (warning: unable to verify)

Result contains higher order function than in optimal. Order 9 vs. order 3.

Time = 3.78 (sec) , antiderivative size = 58, normalized size of antiderivative = 0.53

method result size
risch \(-\frac {9 x^{12}-10 x^{6}+1}{8 x^{8} \left (x^{6}-1\right )^{\frac {2}{3}}}+\frac {{\left (-\operatorname {signum}\left (x^{6}-1\right )\right )}^{\frac {2}{3}} x^{4} \operatorname {hypergeom}\left (\left [\frac {2}{3}, \frac {2}{3}\right ], \left [\frac {5}{3}\right ], x^{6}\right )}{2 \operatorname {signum}\left (x^{6}-1\right )^{\frac {2}{3}}}\) \(58\)
meijerg \(-\frac {\operatorname {signum}\left (x^{6}-1\right )^{\frac {1}{3}} \operatorname {hypergeom}\left (\left [-\frac {1}{3}, -\frac {1}{3}\right ], \left [\frac {2}{3}\right ], x^{6}\right )}{{\left (-\operatorname {signum}\left (x^{6}-1\right )\right )}^{\frac {1}{3}} x^{2}}+\frac {\operatorname {signum}\left (x^{6}-1\right )^{\frac {1}{3}} \left (-x^{6}+1\right )^{\frac {4}{3}}}{8 {\left (-\operatorname {signum}\left (x^{6}-1\right )\right )}^{\frac {1}{3}} x^{8}}\) \(66\)
pseudoelliptic \(\frac {8 \sqrt {3}\, \arctan \left (\frac {\sqrt {3}\, \left (x^{2}+2 \left (x^{6}-1\right )^{\frac {1}{3}}\right )}{3 x^{2}}\right ) x^{8}+4 \ln \left (\frac {x^{4}+x^{2} \left (x^{6}-1\right )^{\frac {1}{3}}+\left (x^{6}-1\right )^{\frac {2}{3}}}{x^{4}}\right ) x^{8}-8 \ln \left (\frac {-x^{2}+\left (x^{6}-1\right )^{\frac {1}{3}}}{x^{2}}\right ) x^{8}-27 \left (x^{6}-1\right )^{\frac {1}{3}} x^{6}+3 \left (x^{6}-1\right )^{\frac {1}{3}}}{24 x^{8}}\) \(113\)
trager \(-\frac {\left (9 x^{6}-1\right ) \left (x^{6}-1\right )^{\frac {1}{3}}}{8 x^{8}}+\frac {\ln \left (-102774784196608 \operatorname {RootOf}\left (65536 \textit {\_Z}^{2}-256 \textit {\_Z} +1\right )^{2} x^{6}-76652531318528 \operatorname {RootOf}\left (65536 \textit {\_Z}^{2}-256 \textit {\_Z} +1\right ) x^{6}-77053995319296 \operatorname {RootOf}\left (65536 \textit {\_Z}^{2}-256 \textit {\_Z} +1\right ) \left (x^{6}-1\right )^{\frac {1}{3}} x^{4}-277853604670 x^{6}-77053995319296 \operatorname {RootOf}\left (65536 \textit {\_Z}^{2}-256 \textit {\_Z} +1\right ) \left (x^{6}-1\right )^{\frac {2}{3}} x^{2}-276285385917 x^{4} \left (x^{6}-1\right )^{\frac {1}{3}}-276285385917 x^{2} \left (x^{6}-1\right )^{\frac {2}{3}}+6577586188582912 \operatorname {RootOf}\left (65536 \textit {\_Z}^{2}-256 \textit {\_Z} +1\right )^{2}+49251987095296 \operatorname {RootOf}\left (65536 \textit {\_Z}^{2}-256 \textit {\_Z} +1\right )+92130405759\right )}{3}-\frac {256 \ln \left (-102774784196608 \operatorname {RootOf}\left (65536 \textit {\_Z}^{2}-256 \textit {\_Z} +1\right )^{2} x^{6}-76652531318528 \operatorname {RootOf}\left (65536 \textit {\_Z}^{2}-256 \textit {\_Z} +1\right ) x^{6}-77053995319296 \operatorname {RootOf}\left (65536 \textit {\_Z}^{2}-256 \textit {\_Z} +1\right ) \left (x^{6}-1\right )^{\frac {1}{3}} x^{4}-277853604670 x^{6}-77053995319296 \operatorname {RootOf}\left (65536 \textit {\_Z}^{2}-256 \textit {\_Z} +1\right ) \left (x^{6}-1\right )^{\frac {2}{3}} x^{2}-276285385917 x^{4} \left (x^{6}-1\right )^{\frac {1}{3}}-276285385917 x^{2} \left (x^{6}-1\right )^{\frac {2}{3}}+6577586188582912 \operatorname {RootOf}\left (65536 \textit {\_Z}^{2}-256 \textit {\_Z} +1\right )^{2}+49251987095296 \operatorname {RootOf}\left (65536 \textit {\_Z}^{2}-256 \textit {\_Z} +1\right )+92130405759\right ) \operatorname {RootOf}\left (65536 \textit {\_Z}^{2}-256 \textit {\_Z} +1\right )}{3}+\frac {256 \operatorname {RootOf}\left (65536 \textit {\_Z}^{2}-256 \textit {\_Z} +1\right ) \ln \left (-102774784196608 \operatorname {RootOf}\left (65536 \textit {\_Z}^{2}-256 \textit {\_Z} +1\right )^{2} x^{6}+77455459320064 \operatorname {RootOf}\left (65536 \textit {\_Z}^{2}-256 \textit {\_Z} +1\right ) x^{6}+77053995319296 \operatorname {RootOf}\left (65536 \textit {\_Z}^{2}-256 \textit {\_Z} +1\right ) \left (x^{6}-1\right )^{\frac {1}{3}} x^{4}-578845773886 x^{6}+77053995319296 \operatorname {RootOf}\left (65536 \textit {\_Z}^{2}-256 \textit {\_Z} +1\right ) \left (x^{6}-1\right )^{\frac {2}{3}} x^{2}-577277555133 x^{4} \left (x^{6}-1\right )^{\frac {1}{3}}-577277555133 x^{2} \left (x^{6}-1\right )^{\frac {2}{3}}+6577586188582912 \operatorname {RootOf}\left (65536 \textit {\_Z}^{2}-256 \textit {\_Z} +1\right )^{2}-100639379193600 \operatorname {RootOf}\left (65536 \textit {\_Z}^{2}-256 \textit {\_Z} +1\right )+384886980542\right )}{3}\) \(469\)

[In]

int((x^6-1)^(1/3)*(2*x^6-1)/x^9,x,method=_RETURNVERBOSE)

[Out]

-1/8*(9*x^12-10*x^6+1)/x^8/(x^6-1)^(2/3)+1/2/signum(x^6-1)^(2/3)*(-signum(x^6-1))^(2/3)*x^4*hypergeom([2/3,2/3
],[5/3],x^6)

Fricas [A] (verification not implemented)

none

Time = 0.41 (sec) , antiderivative size = 116, normalized size of antiderivative = 1.06 \[ \int \frac {\sqrt [3]{-1+x^6} \left (-1+2 x^6\right )}{x^9} \, dx=-\frac {8 \, \sqrt {3} x^{8} \arctan \left (-\frac {25382 \, \sqrt {3} {\left (x^{6} - 1\right )}^{\frac {1}{3}} x^{4} - 13720 \, \sqrt {3} {\left (x^{6} - 1\right )}^{\frac {2}{3}} x^{2} + \sqrt {3} {\left (5831 \, x^{6} - 7200\right )}}{58653 \, x^{6} - 8000}\right ) + 4 \, x^{8} \log \left (-3 \, {\left (x^{6} - 1\right )}^{\frac {1}{3}} x^{4} + 3 \, {\left (x^{6} - 1\right )}^{\frac {2}{3}} x^{2} + 1\right ) + 3 \, {\left (9 \, x^{6} - 1\right )} {\left (x^{6} - 1\right )}^{\frac {1}{3}}}{24 \, x^{8}} \]

[In]

integrate((x^6-1)^(1/3)*(2*x^6-1)/x^9,x, algorithm="fricas")

[Out]

-1/24*(8*sqrt(3)*x^8*arctan(-(25382*sqrt(3)*(x^6 - 1)^(1/3)*x^4 - 13720*sqrt(3)*(x^6 - 1)^(2/3)*x^2 + sqrt(3)*
(5831*x^6 - 7200))/(58653*x^6 - 8000)) + 4*x^8*log(-3*(x^6 - 1)^(1/3)*x^4 + 3*(x^6 - 1)^(2/3)*x^2 + 1) + 3*(9*
x^6 - 1)*(x^6 - 1)^(1/3))/x^8

Sympy [C] (verification not implemented)

Result contains complex when optimal does not.

Time = 1.95 (sec) , antiderivative size = 167, normalized size of antiderivative = 1.53 \[ \int \frac {\sqrt [3]{-1+x^6} \left (-1+2 x^6\right )}{x^9} \, dx=- \begin {cases} \frac {\sqrt [3]{-1 + \frac {1}{x^{6}}} e^{- \frac {2 i \pi }{3}} \Gamma \left (- \frac {4}{3}\right )}{6 \Gamma \left (- \frac {1}{3}\right )} - \frac {\sqrt [3]{-1 + \frac {1}{x^{6}}} e^{- \frac {2 i \pi }{3}} \Gamma \left (- \frac {4}{3}\right )}{6 x^{6} \Gamma \left (- \frac {1}{3}\right )} & \text {for}\: \frac {1}{\left |{x^{6}}\right |} > 1 \\- \frac {\sqrt [3]{1 - \frac {1}{x^{6}}} \Gamma \left (- \frac {4}{3}\right )}{6 \Gamma \left (- \frac {1}{3}\right )} + \frac {\sqrt [3]{1 - \frac {1}{x^{6}}} \Gamma \left (- \frac {4}{3}\right )}{6 x^{6} \Gamma \left (- \frac {1}{3}\right )} & \text {otherwise} \end {cases} + \frac {e^{\frac {i \pi }{3}} \Gamma \left (- \frac {1}{3}\right ) {{}_{2}F_{1}\left (\begin {matrix} - \frac {1}{3}, - \frac {1}{3} \\ \frac {2}{3} \end {matrix}\middle | {x^{6}} \right )}}{3 x^{2} \Gamma \left (\frac {2}{3}\right )} \]

[In]

integrate((x**6-1)**(1/3)*(2*x**6-1)/x**9,x)

[Out]

-Piecewise(((-1 + x**(-6))**(1/3)*exp(-2*I*pi/3)*gamma(-4/3)/(6*gamma(-1/3)) - (-1 + x**(-6))**(1/3)*exp(-2*I*
pi/3)*gamma(-4/3)/(6*x**6*gamma(-1/3)), 1/Abs(x**6) > 1), (-(1 - 1/x**6)**(1/3)*gamma(-4/3)/(6*gamma(-1/3)) +
(1 - 1/x**6)**(1/3)*gamma(-4/3)/(6*x**6*gamma(-1/3)), True)) + exp(I*pi/3)*gamma(-1/3)*hyper((-1/3, -1/3), (2/
3,), x**6)/(3*x**2*gamma(2/3))

Maxima [A] (verification not implemented)

none

Time = 0.31 (sec) , antiderivative size = 93, normalized size of antiderivative = 0.85 \[ \int \frac {\sqrt [3]{-1+x^6} \left (-1+2 x^6\right )}{x^9} \, dx=\frac {1}{3} \, \sqrt {3} \arctan \left (\frac {1}{3} \, \sqrt {3} {\left (\frac {2 \, {\left (x^{6} - 1\right )}^{\frac {1}{3}}}{x^{2}} + 1\right )}\right ) - \frac {{\left (x^{6} - 1\right )}^{\frac {1}{3}}}{x^{2}} - \frac {{\left (x^{6} - 1\right )}^{\frac {4}{3}}}{8 \, x^{8}} + \frac {1}{6} \, \log \left (\frac {{\left (x^{6} - 1\right )}^{\frac {1}{3}}}{x^{2}} + \frac {{\left (x^{6} - 1\right )}^{\frac {2}{3}}}{x^{4}} + 1\right ) - \frac {1}{3} \, \log \left (\frac {{\left (x^{6} - 1\right )}^{\frac {1}{3}}}{x^{2}} - 1\right ) \]

[In]

integrate((x^6-1)^(1/3)*(2*x^6-1)/x^9,x, algorithm="maxima")

[Out]

1/3*sqrt(3)*arctan(1/3*sqrt(3)*(2*(x^6 - 1)^(1/3)/x^2 + 1)) - (x^6 - 1)^(1/3)/x^2 - 1/8*(x^6 - 1)^(4/3)/x^8 +
1/6*log((x^6 - 1)^(1/3)/x^2 + (x^6 - 1)^(2/3)/x^4 + 1) - 1/3*log((x^6 - 1)^(1/3)/x^2 - 1)

Giac [F]

\[ \int \frac {\sqrt [3]{-1+x^6} \left (-1+2 x^6\right )}{x^9} \, dx=\int { \frac {{\left (2 \, x^{6} - 1\right )} {\left (x^{6} - 1\right )}^{\frac {1}{3}}}{x^{9}} \,d x } \]

[In]

integrate((x^6-1)^(1/3)*(2*x^6-1)/x^9,x, algorithm="giac")

[Out]

integrate((2*x^6 - 1)*(x^6 - 1)^(1/3)/x^9, x)

Mupad [F(-1)]

Timed out. \[ \int \frac {\sqrt [3]{-1+x^6} \left (-1+2 x^6\right )}{x^9} \, dx=\int \frac {{\left (x^6-1\right )}^{1/3}\,\left (2\,x^6-1\right )}{x^9} \,d x \]

[In]

int(((x^6 - 1)^(1/3)*(2*x^6 - 1))/x^9,x)

[Out]

int(((x^6 - 1)^(1/3)*(2*x^6 - 1))/x^9, x)