\(\int \frac {(1+x^4) \sqrt [4]{-x^2+x^4}}{1+x^4+x^8} \, dx\) [1793]

   Optimal result
   Rubi [C] (verified)
   Mathematica [A] (verified)
   Maple [N/A] (verified)
   Fricas [C] (verification not implemented)
   Sympy [N/A]
   Maxima [N/A]
   Giac [F(-2)]
   Mupad [N/A]

Optimal result

Integrand size = 29, antiderivative size = 121 \[ \int \frac {\left (1+x^4\right ) \sqrt [4]{-x^2+x^4}}{1+x^4+x^8} \, dx=\frac {1}{4} \text {RootSum}\left [3-3 \text {$\#$1}^4+\text {$\#$1}^8\&,\frac {-\log (x) \text {$\#$1}+\log \left (\sqrt [4]{-x^2+x^4}-x \text {$\#$1}\right ) \text {$\#$1}}{-3+2 \text {$\#$1}^4}\&\right ]+\frac {1}{4} \text {RootSum}\left [1-\text {$\#$1}^4+\text {$\#$1}^8\&,\frac {-\log (x) \text {$\#$1}+\log \left (\sqrt [4]{-x^2+x^4}-x \text {$\#$1}\right ) \text {$\#$1}}{-1+2 \text {$\#$1}^4}\&\right ] \]

[Out]

Unintegrable

Rubi [C] (verified)

Result contains complex when optimal does not.

Time = 0.69 (sec) , antiderivative size = 333, normalized size of antiderivative = 2.75, number of steps used = 17, number of rules used = 6, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.207, Rules used = {2081, 6860, 1284, 1543, 525, 524} \[ \int \frac {\left (1+x^4\right ) \sqrt [4]{-x^2+x^4}}{1+x^4+x^8} \, dx=\frac {\left (\sqrt {3}+3 i\right ) x \sqrt [4]{x^4-x^2} \operatorname {AppellF1}\left (\frac {3}{4},-\frac {1}{4},1,\frac {7}{4},x^2,-\frac {1}{2} \left (1-i \sqrt {3}\right ) x^2\right )}{9 \left (\sqrt {3}+i\right ) \sqrt [4]{1-x^2}}+\frac {\left (\sqrt {3}+3 i\right ) x \sqrt [4]{x^4-x^2} \operatorname {AppellF1}\left (\frac {3}{4},-\frac {1}{4},1,\frac {7}{4},x^2,\frac {1}{2} \left (1-i \sqrt {3}\right ) x^2\right )}{9 \left (\sqrt {3}+i\right ) \sqrt [4]{1-x^2}}+\frac {\left (-\sqrt {3}+3 i\right ) x \sqrt [4]{x^4-x^2} \operatorname {AppellF1}\left (\frac {3}{4},-\frac {1}{4},1,\frac {7}{4},x^2,-\frac {1}{2} \left (1+i \sqrt {3}\right ) x^2\right )}{9 \left (-\sqrt {3}+i\right ) \sqrt [4]{1-x^2}}+\frac {\left (-\sqrt {3}+3 i\right ) x \sqrt [4]{x^4-x^2} \operatorname {AppellF1}\left (\frac {3}{4},-\frac {1}{4},1,\frac {7}{4},x^2,\frac {1}{2} \left (1+i \sqrt {3}\right ) x^2\right )}{9 \left (-\sqrt {3}+i\right ) \sqrt [4]{1-x^2}} \]

[In]

Int[((1 + x^4)*(-x^2 + x^4)^(1/4))/(1 + x^4 + x^8),x]

[Out]

((3*I + Sqrt[3])*x*(-x^2 + x^4)^(1/4)*AppellF1[3/4, -1/4, 1, 7/4, x^2, -1/2*((1 - I*Sqrt[3])*x^2)])/(9*(I + Sq
rt[3])*(1 - x^2)^(1/4)) + ((3*I + Sqrt[3])*x*(-x^2 + x^4)^(1/4)*AppellF1[3/4, -1/4, 1, 7/4, x^2, ((1 - I*Sqrt[
3])*x^2)/2])/(9*(I + Sqrt[3])*(1 - x^2)^(1/4)) + ((3*I - Sqrt[3])*x*(-x^2 + x^4)^(1/4)*AppellF1[3/4, -1/4, 1,
7/4, x^2, -1/2*((1 + I*Sqrt[3])*x^2)])/(9*(I - Sqrt[3])*(1 - x^2)^(1/4)) + ((3*I - Sqrt[3])*x*(-x^2 + x^4)^(1/
4)*AppellF1[3/4, -1/4, 1, 7/4, x^2, ((1 + I*Sqrt[3])*x^2)/2])/(9*(I - Sqrt[3])*(1 - x^2)^(1/4))

Rule 524

Int[((e_.)*(x_))^(m_.)*((a_) + (b_.)*(x_)^(n_))^(p_)*((c_) + (d_.)*(x_)^(n_))^(q_), x_Symbol] :> Simp[a^p*c^q*
((e*x)^(m + 1)/(e*(m + 1)))*AppellF1[(m + 1)/n, -p, -q, 1 + (m + 1)/n, (-b)*(x^n/a), (-d)*(x^n/c)], x] /; Free
Q[{a, b, c, d, e, m, n, p, q}, x] && NeQ[b*c - a*d, 0] && NeQ[m, -1] && NeQ[m, n - 1] && (IntegerQ[p] || GtQ[a
, 0]) && (IntegerQ[q] || GtQ[c, 0])

Rule 525

Int[((e_.)*(x_))^(m_.)*((a_) + (b_.)*(x_)^(n_))^(p_)*((c_) + (d_.)*(x_)^(n_))^(q_), x_Symbol] :> Dist[a^IntPar
t[p]*((a + b*x^n)^FracPart[p]/(1 + b*(x^n/a))^FracPart[p]), Int[(e*x)^m*(1 + b*(x^n/a))^p*(c + d*x^n)^q, x], x
] /; FreeQ[{a, b, c, d, e, m, n, p, q}, x] && NeQ[b*c - a*d, 0] && NeQ[m, -1] && NeQ[m, n - 1] &&  !(IntegerQ[
p] || GtQ[a, 0])

Rule 1284

Int[((f_.)*(x_))^(m_)*((d_) + (e_.)*(x_)^2)^(q_.)*((a_) + (c_.)*(x_)^4)^(p_), x_Symbol] :> With[{k = Denominat
or[m]}, Dist[k/f, Subst[Int[x^(k*(m + 1) - 1)*(d + e*(x^(2*k)/f))^q*(a + c*(x^(4*k)/f))^p, x], x, (f*x)^(1/k)]
, x]] /; FreeQ[{a, c, d, e, f, p, q}, x] && FractionQ[m] && IntegerQ[p]

Rule 1543

Int[(((f_.)*(x_))^(m_.)*((d_) + (e_.)*(x_)^(n_))^(q_))/((a_) + (c_.)*(x_)^(n2_.)), x_Symbol] :> Int[ExpandInte
grand[(d + e*x^n)^q, (f*x)^m/(a + c*x^(2*n)), x], x] /; FreeQ[{a, c, d, e, f, q, n}, x] && EqQ[n2, 2*n] && IGt
Q[n, 0] &&  !IntegerQ[q] && IntegerQ[m]

Rule 2081

Int[(u_.)*(P_)^(p_.), x_Symbol] :> With[{m = MinimumMonomialExponent[P, x]}, Dist[P^FracPart[p]/(x^(m*FracPart
[p])*Distrib[1/x^m, P]^FracPart[p]), Int[u*x^(m*p)*Distrib[1/x^m, P]^p, x], x]] /; FreeQ[p, x] &&  !IntegerQ[p
] && SumQ[P] && EveryQ[BinomialQ[#1, x] & , P] &&  !PolyQ[P, x, 2]

Rule 6860

Int[(u_)/((a_.) + (b_.)*(x_)^(n_.) + (c_.)*(x_)^(n2_.)), x_Symbol] :> With[{v = RationalFunctionExpand[u/(a +
b*x^n + c*x^(2*n)), x]}, Int[v, x] /; SumQ[v]] /; FreeQ[{a, b, c}, x] && EqQ[n2, 2*n] && IGtQ[n, 0]

Rubi steps \begin{align*} \text {integral}& = \frac {\sqrt [4]{-x^2+x^4} \int \frac {\sqrt {x} \sqrt [4]{-1+x^2} \left (1+x^4\right )}{1+x^4+x^8} \, dx}{\sqrt {x} \sqrt [4]{-1+x^2}} \\ & = \frac {\sqrt [4]{-x^2+x^4} \int \left (\frac {\left (1-\frac {i}{\sqrt {3}}\right ) \sqrt {x} \sqrt [4]{-1+x^2}}{1-i \sqrt {3}+2 x^4}+\frac {\left (1+\frac {i}{\sqrt {3}}\right ) \sqrt {x} \sqrt [4]{-1+x^2}}{1+i \sqrt {3}+2 x^4}\right ) \, dx}{\sqrt {x} \sqrt [4]{-1+x^2}} \\ & = \frac {\left (\left (3-i \sqrt {3}\right ) \sqrt [4]{-x^2+x^4}\right ) \int \frac {\sqrt {x} \sqrt [4]{-1+x^2}}{1-i \sqrt {3}+2 x^4} \, dx}{3 \sqrt {x} \sqrt [4]{-1+x^2}}+\frac {\left (\left (3+i \sqrt {3}\right ) \sqrt [4]{-x^2+x^4}\right ) \int \frac {\sqrt {x} \sqrt [4]{-1+x^2}}{1+i \sqrt {3}+2 x^4} \, dx}{3 \sqrt {x} \sqrt [4]{-1+x^2}} \\ & = \frac {\left (2 \left (3-i \sqrt {3}\right ) \sqrt [4]{-x^2+x^4}\right ) \text {Subst}\left (\int \frac {x^2 \sqrt [4]{-1+x^4}}{1-i \sqrt {3}+2 x^8} \, dx,x,\sqrt {x}\right )}{3 \sqrt {x} \sqrt [4]{-1+x^2}}+\frac {\left (2 \left (3+i \sqrt {3}\right ) \sqrt [4]{-x^2+x^4}\right ) \text {Subst}\left (\int \frac {x^2 \sqrt [4]{-1+x^4}}{1+i \sqrt {3}+2 x^8} \, dx,x,\sqrt {x}\right )}{3 \sqrt {x} \sqrt [4]{-1+x^2}} \\ & = \frac {\left (2 \left (3-i \sqrt {3}\right ) \sqrt [4]{-x^2+x^4}\right ) \text {Subst}\left (\int \left (\frac {x^2 \sqrt [4]{-1+x^4}}{\sqrt {2 \left (-1+i \sqrt {3}\right )} \left (-\sqrt {2 \left (-1+i \sqrt {3}\right )}+2 x^4\right )}-\frac {x^2 \sqrt [4]{-1+x^4}}{\sqrt {2 \left (-1+i \sqrt {3}\right )} \left (\sqrt {2 \left (-1+i \sqrt {3}\right )}+2 x^4\right )}\right ) \, dx,x,\sqrt {x}\right )}{3 \sqrt {x} \sqrt [4]{-1+x^2}}+\frac {\left (2 \left (3+i \sqrt {3}\right ) \sqrt [4]{-x^2+x^4}\right ) \text {Subst}\left (\int \left (\frac {x^2 \sqrt [4]{-1+x^4}}{\sqrt {2 \left (-1-i \sqrt {3}\right )} \left (-\sqrt {2 \left (-1-i \sqrt {3}\right )}+2 x^4\right )}-\frac {x^2 \sqrt [4]{-1+x^4}}{\sqrt {2 \left (-1-i \sqrt {3}\right )} \left (\sqrt {2 \left (-1-i \sqrt {3}\right )}+2 x^4\right )}\right ) \, dx,x,\sqrt {x}\right )}{3 \sqrt {x} \sqrt [4]{-1+x^2}} \\ & = \frac {\left (\left (3-i \sqrt {3}\right ) \sqrt [4]{-x^2+x^4}\right ) \text {Subst}\left (\int \frac {x^2 \sqrt [4]{-1+x^4}}{-\sqrt {2 \left (-1+i \sqrt {3}\right )}+2 x^4} \, dx,x,\sqrt {x}\right )}{3 \sqrt {\frac {1}{2} \left (-1+i \sqrt {3}\right )} \sqrt {x} \sqrt [4]{-1+x^2}}-\frac {\left (\left (3-i \sqrt {3}\right ) \sqrt [4]{-x^2+x^4}\right ) \text {Subst}\left (\int \frac {x^2 \sqrt [4]{-1+x^4}}{\sqrt {2 \left (-1+i \sqrt {3}\right )}+2 x^4} \, dx,x,\sqrt {x}\right )}{3 \sqrt {\frac {1}{2} \left (-1+i \sqrt {3}\right )} \sqrt {x} \sqrt [4]{-1+x^2}}+\frac {\left (\left (3+i \sqrt {3}\right ) \sqrt [4]{-x^2+x^4}\right ) \text {Subst}\left (\int \frac {x^2 \sqrt [4]{-1+x^4}}{-\sqrt {2 \left (-1-i \sqrt {3}\right )}+2 x^4} \, dx,x,\sqrt {x}\right )}{3 \sqrt {\frac {1}{2} \left (-1-i \sqrt {3}\right )} \sqrt {x} \sqrt [4]{-1+x^2}}-\frac {\left (\left (3+i \sqrt {3}\right ) \sqrt [4]{-x^2+x^4}\right ) \text {Subst}\left (\int \frac {x^2 \sqrt [4]{-1+x^4}}{\sqrt {2 \left (-1-i \sqrt {3}\right )}+2 x^4} \, dx,x,\sqrt {x}\right )}{3 \sqrt {\frac {1}{2} \left (-1-i \sqrt {3}\right )} \sqrt {x} \sqrt [4]{-1+x^2}} \\ & = \frac {\left (\left (3-i \sqrt {3}\right ) \sqrt [4]{-x^2+x^4}\right ) \text {Subst}\left (\int \frac {x^2 \sqrt [4]{1-x^4}}{-\sqrt {2 \left (-1+i \sqrt {3}\right )}+2 x^4} \, dx,x,\sqrt {x}\right )}{3 \sqrt {\frac {1}{2} \left (-1+i \sqrt {3}\right )} \sqrt {x} \sqrt [4]{1-x^2}}-\frac {\left (\left (3-i \sqrt {3}\right ) \sqrt [4]{-x^2+x^4}\right ) \text {Subst}\left (\int \frac {x^2 \sqrt [4]{1-x^4}}{\sqrt {2 \left (-1+i \sqrt {3}\right )}+2 x^4} \, dx,x,\sqrt {x}\right )}{3 \sqrt {\frac {1}{2} \left (-1+i \sqrt {3}\right )} \sqrt {x} \sqrt [4]{1-x^2}}+\frac {\left (\left (3+i \sqrt {3}\right ) \sqrt [4]{-x^2+x^4}\right ) \text {Subst}\left (\int \frac {x^2 \sqrt [4]{1-x^4}}{-\sqrt {2 \left (-1-i \sqrt {3}\right )}+2 x^4} \, dx,x,\sqrt {x}\right )}{3 \sqrt {\frac {1}{2} \left (-1-i \sqrt {3}\right )} \sqrt {x} \sqrt [4]{1-x^2}}-\frac {\left (\left (3+i \sqrt {3}\right ) \sqrt [4]{-x^2+x^4}\right ) \text {Subst}\left (\int \frac {x^2 \sqrt [4]{1-x^4}}{\sqrt {2 \left (-1-i \sqrt {3}\right )}+2 x^4} \, dx,x,\sqrt {x}\right )}{3 \sqrt {\frac {1}{2} \left (-1-i \sqrt {3}\right )} \sqrt {x} \sqrt [4]{1-x^2}} \\ & = \frac {\left (3 i+\sqrt {3}\right ) x \sqrt [4]{-x^2+x^4} \operatorname {AppellF1}\left (\frac {3}{4},-\frac {1}{4},1,\frac {7}{4},x^2,-\frac {1}{2} \left (1-i \sqrt {3}\right ) x^2\right )}{9 \left (i+\sqrt {3}\right ) \sqrt [4]{1-x^2}}+\frac {\left (3 i+\sqrt {3}\right ) x \sqrt [4]{-x^2+x^4} \operatorname {AppellF1}\left (\frac {3}{4},-\frac {1}{4},1,\frac {7}{4},x^2,\frac {1}{2} \left (1-i \sqrt {3}\right ) x^2\right )}{9 \left (i+\sqrt {3}\right ) \sqrt [4]{1-x^2}}+\frac {\left (3 i-\sqrt {3}\right ) x \sqrt [4]{-x^2+x^4} \operatorname {AppellF1}\left (\frac {3}{4},-\frac {1}{4},1,\frac {7}{4},x^2,-\frac {1}{2} \left (1+i \sqrt {3}\right ) x^2\right )}{9 \left (i-\sqrt {3}\right ) \sqrt [4]{1-x^2}}+\frac {\left (3 i-\sqrt {3}\right ) x \sqrt [4]{-x^2+x^4} \operatorname {AppellF1}\left (\frac {3}{4},-\frac {1}{4},1,\frac {7}{4},x^2,\frac {1}{2} \left (1+i \sqrt {3}\right ) x^2\right )}{9 \left (i-\sqrt {3}\right ) \sqrt [4]{1-x^2}} \\ \end{align*}

Mathematica [A] (verified)

Time = 0.33 (sec) , antiderivative size = 152, normalized size of antiderivative = 1.26 \[ \int \frac {\left (1+x^4\right ) \sqrt [4]{-x^2+x^4}}{1+x^4+x^8} \, dx=\frac {x^{3/2} \left (-1+x^2\right )^{3/4} \left (\text {RootSum}\left [3-3 \text {$\#$1}^4+\text {$\#$1}^8\&,\frac {-\log \left (\sqrt {x}\right ) \text {$\#$1}+\log \left (\sqrt [4]{-1+x^2}-\sqrt {x} \text {$\#$1}\right ) \text {$\#$1}}{-3+2 \text {$\#$1}^4}\&\right ]+\text {RootSum}\left [1-\text {$\#$1}^4+\text {$\#$1}^8\&,\frac {-\log \left (\sqrt {x}\right ) \text {$\#$1}+\log \left (\sqrt [4]{-1+x^2}-\sqrt {x} \text {$\#$1}\right ) \text {$\#$1}}{-1+2 \text {$\#$1}^4}\&\right ]\right )}{4 \left (x^2 \left (-1+x^2\right )\right )^{3/4}} \]

[In]

Integrate[((1 + x^4)*(-x^2 + x^4)^(1/4))/(1 + x^4 + x^8),x]

[Out]

(x^(3/2)*(-1 + x^2)^(3/4)*(RootSum[3 - 3*#1^4 + #1^8 & , (-(Log[Sqrt[x]]*#1) + Log[(-1 + x^2)^(1/4) - Sqrt[x]*
#1]*#1)/(-3 + 2*#1^4) & ] + RootSum[1 - #1^4 + #1^8 & , (-(Log[Sqrt[x]]*#1) + Log[(-1 + x^2)^(1/4) - Sqrt[x]*#
1]*#1)/(-1 + 2*#1^4) & ]))/(4*(x^2*(-1 + x^2))^(3/4))

Maple [N/A] (verified)

Time = 113.07 (sec) , antiderivative size = 98, normalized size of antiderivative = 0.81

method result size
pseudoelliptic \(\frac {\left (\munderset {\textit {\_R} =\operatorname {RootOf}\left (\textit {\_Z}^{8}-3 \textit {\_Z}^{4}+3\right )}{\sum }\frac {\textit {\_R} \ln \left (\frac {-\textit {\_R} x +\left (x^{4}-x^{2}\right )^{\frac {1}{4}}}{x}\right )}{2 \textit {\_R}^{4}-3}\right )}{4}+\frac {\left (\munderset {\textit {\_R} =\operatorname {RootOf}\left (\textit {\_Z}^{8}-\textit {\_Z}^{4}+1\right )}{\sum }\frac {\textit {\_R} \ln \left (\frac {-\textit {\_R} x +\left (x^{4}-x^{2}\right )^{\frac {1}{4}}}{x}\right )}{2 \textit {\_R}^{4}-1}\right )}{4}\) \(98\)
trager \(\text {Expression too large to display}\) \(6399\)

[In]

int((x^4+1)*(x^4-x^2)^(1/4)/(x^8+x^4+1),x,method=_RETURNVERBOSE)

[Out]

1/4*sum(_R*ln((-_R*x+(x^4-x^2)^(1/4))/x)/(2*_R^4-3),_R=RootOf(_Z^8-3*_Z^4+3))+1/4*sum(_R*ln((-_R*x+(x^4-x^2)^(
1/4))/x)/(2*_R^4-1),_R=RootOf(_Z^8-_Z^4+1))

Fricas [C] (verification not implemented)

Result contains higher order function than in optimal. Order 3 vs. order 1.

Time = 5.03 (sec) , antiderivative size = 3561, normalized size of antiderivative = 29.43 \[ \int \frac {\left (1+x^4\right ) \sqrt [4]{-x^2+x^4}}{1+x^4+x^8} \, dx=\text {Too large to display} \]

[In]

integrate((x^4+1)*(x^4-x^2)^(1/4)/(x^8+x^4+1),x, algorithm="fricas")

[Out]

-1/48*sqrt(6)*sqrt(-sqrt(2)*sqrt(I*sqrt(3) + 3))*log(-(24*(x^4 - x^2)^(3/4)*(2*x^2 + sqrt(3)*(8*I*x^2 + 5*I) -
 11) + 12*(x^4 - x^2)^(1/4)*(sqrt(3)*sqrt(2)*(8*I*x^4 + 5*I*x^2) + sqrt(2)*(2*x^4 - 11*x^2))*sqrt(I*sqrt(3) +
3) - (4*sqrt(6)*sqrt(x^4 - x^2)*(24*x^3 - sqrt(3)*(2*I*x^3 - 11*I*x) + 15*x) + sqrt(6)*(sqrt(3)*sqrt(2)*(-7*I*
x^5 + 19*I*x^3 - 3*I*x) + sqrt(2)*(35*x^5 + 17*x^3 - 13*x))*sqrt(I*sqrt(3) + 3))*sqrt(-sqrt(2)*sqrt(I*sqrt(3)
+ 3)))/(x^5 + x^3 + x)) + 1/48*sqrt(6)*sqrt(-sqrt(2)*sqrt(I*sqrt(3) + 3))*log(-(24*(x^4 - x^2)^(3/4)*(2*x^2 +
sqrt(3)*(8*I*x^2 + 5*I) - 11) + 12*(x^4 - x^2)^(1/4)*(sqrt(3)*sqrt(2)*(8*I*x^4 + 5*I*x^2) + sqrt(2)*(2*x^4 - 1
1*x^2))*sqrt(I*sqrt(3) + 3) + (4*sqrt(6)*sqrt(x^4 - x^2)*(24*x^3 + sqrt(3)*(-2*I*x^3 + 11*I*x) + 15*x) - sqrt(
6)*(sqrt(3)*sqrt(2)*(7*I*x^5 - 19*I*x^3 + 3*I*x) - sqrt(2)*(35*x^5 + 17*x^3 - 13*x))*sqrt(I*sqrt(3) + 3))*sqrt
(-sqrt(2)*sqrt(I*sqrt(3) + 3)))/(x^5 + x^3 + x)) - 1/48*sqrt(6)*sqrt(sqrt(2)*sqrt(I*sqrt(3) + 3))*log(-(24*(x^
4 - x^2)^(3/4)*(2*x^2 + sqrt(3)*(8*I*x^2 + 5*I) - 11) + 12*(x^4 - x^2)^(1/4)*(sqrt(3)*sqrt(2)*(-8*I*x^4 - 5*I*
x^2) - sqrt(2)*(2*x^4 - 11*x^2))*sqrt(I*sqrt(3) + 3) - (4*sqrt(6)*sqrt(x^4 - x^2)*(24*x^3 - sqrt(3)*(2*I*x^3 -
 11*I*x) + 15*x) + sqrt(6)*(sqrt(3)*sqrt(2)*(7*I*x^5 - 19*I*x^3 + 3*I*x) - sqrt(2)*(35*x^5 + 17*x^3 - 13*x))*s
qrt(I*sqrt(3) + 3))*sqrt(sqrt(2)*sqrt(I*sqrt(3) + 3)))/(x^5 + x^3 + x)) + 1/48*sqrt(6)*sqrt(sqrt(2)*sqrt(I*sqr
t(3) + 3))*log(-(24*(x^4 - x^2)^(3/4)*(2*x^2 + sqrt(3)*(8*I*x^2 + 5*I) - 11) + 12*(x^4 - x^2)^(1/4)*(sqrt(3)*s
qrt(2)*(-8*I*x^4 - 5*I*x^2) - sqrt(2)*(2*x^4 - 11*x^2))*sqrt(I*sqrt(3) + 3) + (4*sqrt(6)*sqrt(x^4 - x^2)*(24*x
^3 + sqrt(3)*(-2*I*x^3 + 11*I*x) + 15*x) - sqrt(6)*(sqrt(3)*sqrt(2)*(-7*I*x^5 + 19*I*x^3 - 3*I*x) + sqrt(2)*(3
5*x^5 + 17*x^3 - 13*x))*sqrt(I*sqrt(3) + 3))*sqrt(sqrt(2)*sqrt(I*sqrt(3) + 3)))/(x^5 + x^3 + x)) + 1/48*sqrt(6
)*sqrt(sqrt(2)*sqrt(-I*sqrt(3) + 3))*log(-(24*(x^4 - x^2)^(3/4)*(2*x^2 + sqrt(3)*(-8*I*x^2 - 5*I) - 11) + 12*(
x^4 - x^2)^(1/4)*(sqrt(3)*sqrt(2)*(8*I*x^4 + 5*I*x^2) - sqrt(2)*(2*x^4 - 11*x^2))*sqrt(-I*sqrt(3) + 3) + (4*sq
rt(6)*sqrt(x^4 - x^2)*(24*x^3 + sqrt(3)*(2*I*x^3 - 11*I*x) + 15*x) - sqrt(6)*(sqrt(3)*sqrt(2)*(7*I*x^5 - 19*I*
x^3 + 3*I*x) + sqrt(2)*(35*x^5 + 17*x^3 - 13*x))*sqrt(-I*sqrt(3) + 3))*sqrt(sqrt(2)*sqrt(-I*sqrt(3) + 3)))/(x^
5 + x^3 + x)) - 1/48*sqrt(6)*sqrt(sqrt(2)*sqrt(-I*sqrt(3) + 3))*log(-(24*(x^4 - x^2)^(3/4)*(2*x^2 + sqrt(3)*(-
8*I*x^2 - 5*I) - 11) + 12*(x^4 - x^2)^(1/4)*(sqrt(3)*sqrt(2)*(8*I*x^4 + 5*I*x^2) - sqrt(2)*(2*x^4 - 11*x^2))*s
qrt(-I*sqrt(3) + 3) - (4*sqrt(6)*sqrt(x^4 - x^2)*(24*x^3 - sqrt(3)*(-2*I*x^3 + 11*I*x) + 15*x) + sqrt(6)*(sqrt
(3)*sqrt(2)*(-7*I*x^5 + 19*I*x^3 - 3*I*x) - sqrt(2)*(35*x^5 + 17*x^3 - 13*x))*sqrt(-I*sqrt(3) + 3))*sqrt(sqrt(
2)*sqrt(-I*sqrt(3) + 3)))/(x^5 + x^3 + x)) + 1/48*sqrt(6)*sqrt(-sqrt(2)*sqrt(-I*sqrt(3) + 3))*log(-(24*(x^4 -
x^2)^(3/4)*(2*x^2 + sqrt(3)*(-8*I*x^2 - 5*I) - 11) + 12*(x^4 - x^2)^(1/4)*(sqrt(3)*sqrt(2)*(-8*I*x^4 - 5*I*x^2
) + sqrt(2)*(2*x^4 - 11*x^2))*sqrt(-I*sqrt(3) + 3) + (4*sqrt(6)*sqrt(x^4 - x^2)*(24*x^3 + sqrt(3)*(2*I*x^3 - 1
1*I*x) + 15*x) - sqrt(6)*(sqrt(3)*sqrt(2)*(-7*I*x^5 + 19*I*x^3 - 3*I*x) - sqrt(2)*(35*x^5 + 17*x^3 - 13*x))*sq
rt(-I*sqrt(3) + 3))*sqrt(-sqrt(2)*sqrt(-I*sqrt(3) + 3)))/(x^5 + x^3 + x)) - 1/48*sqrt(6)*sqrt(-sqrt(2)*sqrt(-I
*sqrt(3) + 3))*log(-(24*(x^4 - x^2)^(3/4)*(2*x^2 + sqrt(3)*(-8*I*x^2 - 5*I) - 11) + 12*(x^4 - x^2)^(1/4)*(sqrt
(3)*sqrt(2)*(-8*I*x^4 - 5*I*x^2) + sqrt(2)*(2*x^4 - 11*x^2))*sqrt(-I*sqrt(3) + 3) - (4*sqrt(6)*sqrt(x^4 - x^2)
*(24*x^3 - sqrt(3)*(-2*I*x^3 + 11*I*x) + 15*x) + sqrt(6)*(sqrt(3)*sqrt(2)*(7*I*x^5 - 19*I*x^3 + 3*I*x) + sqrt(
2)*(35*x^5 + 17*x^3 - 13*x))*sqrt(-I*sqrt(3) + 3))*sqrt(-sqrt(2)*sqrt(-I*sqrt(3) + 3)))/(x^5 + x^3 + x)) - 1/4
8*sqrt(6)*sqrt(-sqrt(2)*sqrt(I*sqrt(3) + 1))*log(-(24*(x^4 - x^2)^(3/4)*(2*x^2 + I*sqrt(3) - 1) + 12*(x^4 - x^
2)^(1/4)*(I*sqrt(3)*sqrt(2)*x^2 + sqrt(2)*(2*x^4 - x^2))*sqrt(I*sqrt(3) + 1) + (4*sqrt(6)*sqrt(x^4 - x^2)*(sqr
t(3)*(2*I*x^3 - I*x) - 3*x) - sqrt(6)*(sqrt(3)*sqrt(2)*(-3*I*x^5 + I*x^3 + I*x) - 3*sqrt(2)*(x^5 - 3*x^3 + x))
*sqrt(I*sqrt(3) + 1))*sqrt(-sqrt(2)*sqrt(I*sqrt(3) + 1)))/(x^5 - x^3 + x)) + 1/48*sqrt(6)*sqrt(-sqrt(2)*sqrt(I
*sqrt(3) + 1))*log(-(24*(x^4 - x^2)^(3/4)*(2*x^2 + I*sqrt(3) - 1) + 12*(x^4 - x^2)^(1/4)*(I*sqrt(3)*sqrt(2)*x^
2 + sqrt(2)*(2*x^4 - x^2))*sqrt(I*sqrt(3) + 1) + (4*sqrt(6)*sqrt(x^4 - x^2)*(sqrt(3)*(-2*I*x^3 + I*x) + 3*x) -
 sqrt(6)*(sqrt(3)*sqrt(2)*(3*I*x^5 - I*x^3 - I*x) + 3*sqrt(2)*(x^5 - 3*x^3 + x))*sqrt(I*sqrt(3) + 1))*sqrt(-sq
rt(2)*sqrt(I*sqrt(3) + 1)))/(x^5 - x^3 + x)) - 1/48*sqrt(6)*sqrt(sqrt(2)*sqrt(I*sqrt(3) + 1))*log(-(24*(x^4 -
x^2)^(3/4)*(2*x^2 + I*sqrt(3) - 1) + 12*(x^4 - x^2)^(1/4)*(-I*sqrt(3)*sqrt(2)*x^2 - sqrt(2)*(2*x^4 - x^2))*sqr
t(I*sqrt(3) + 1) + (4*sqrt(6)*sqrt(x^4 - x^2)*(sqrt(3)*(2*I*x^3 - I*x) - 3*x) - sqrt(6)*(sqrt(3)*sqrt(2)*(3*I*
x^5 - I*x^3 - I*x) + 3*sqrt(2)*(x^5 - 3*x^3 + x))*sqrt(I*sqrt(3) + 1))*sqrt(sqrt(2)*sqrt(I*sqrt(3) + 1)))/(x^5
 - x^3 + x)) + 1/48*sqrt(6)*sqrt(sqrt(2)*sqrt(I*sqrt(3) + 1))*log(-(24*(x^4 - x^2)^(3/4)*(2*x^2 + I*sqrt(3) -
1) + 12*(x^4 - x^2)^(1/4)*(-I*sqrt(3)*sqrt(2)*x^2 - sqrt(2)*(2*x^4 - x^2))*sqrt(I*sqrt(3) + 1) + (4*sqrt(6)*sq
rt(x^4 - x^2)*(sqrt(3)*(-2*I*x^3 + I*x) + 3*x) - sqrt(6)*(sqrt(3)*sqrt(2)*(-3*I*x^5 + I*x^3 + I*x) - 3*sqrt(2)
*(x^5 - 3*x^3 + x))*sqrt(I*sqrt(3) + 1))*sqrt(sqrt(2)*sqrt(I*sqrt(3) + 1)))/(x^5 - x^3 + x)) + 1/48*sqrt(6)*sq
rt(sqrt(2)*sqrt(-I*sqrt(3) + 1))*log(-(24*(x^4 - x^2)^(3/4)*(2*x^2 - I*sqrt(3) - 1) + 12*(x^4 - x^2)^(1/4)*(I*
sqrt(3)*sqrt(2)*x^2 - sqrt(2)*(2*x^4 - x^2))*sqrt(-I*sqrt(3) + 1) + (4*sqrt(6)*sqrt(x^4 - x^2)*(sqrt(3)*(2*I*x
^3 - I*x) + 3*x) - sqrt(6)*(sqrt(3)*sqrt(2)*(3*I*x^5 - I*x^3 - I*x) - 3*sqrt(2)*(x^5 - 3*x^3 + x))*sqrt(-I*sqr
t(3) + 1))*sqrt(sqrt(2)*sqrt(-I*sqrt(3) + 1)))/(x^5 - x^3 + x)) - 1/48*sqrt(6)*sqrt(sqrt(2)*sqrt(-I*sqrt(3) +
1))*log(-(24*(x^4 - x^2)^(3/4)*(2*x^2 - I*sqrt(3) - 1) + 12*(x^4 - x^2)^(1/4)*(I*sqrt(3)*sqrt(2)*x^2 - sqrt(2)
*(2*x^4 - x^2))*sqrt(-I*sqrt(3) + 1) + (4*sqrt(6)*sqrt(x^4 - x^2)*(sqrt(3)*(-2*I*x^3 + I*x) - 3*x) - sqrt(6)*(
sqrt(3)*sqrt(2)*(-3*I*x^5 + I*x^3 + I*x) + 3*sqrt(2)*(x^5 - 3*x^3 + x))*sqrt(-I*sqrt(3) + 1))*sqrt(sqrt(2)*sqr
t(-I*sqrt(3) + 1)))/(x^5 - x^3 + x)) + 1/48*sqrt(6)*sqrt(-sqrt(2)*sqrt(-I*sqrt(3) + 1))*log(-(24*(x^4 - x^2)^(
3/4)*(2*x^2 - I*sqrt(3) - 1) + 12*(x^4 - x^2)^(1/4)*(-I*sqrt(3)*sqrt(2)*x^2 + sqrt(2)*(2*x^4 - x^2))*sqrt(-I*s
qrt(3) + 1) + (4*sqrt(6)*sqrt(x^4 - x^2)*(sqrt(3)*(2*I*x^3 - I*x) + 3*x) - sqrt(6)*(sqrt(3)*sqrt(2)*(-3*I*x^5
+ I*x^3 + I*x) + 3*sqrt(2)*(x^5 - 3*x^3 + x))*sqrt(-I*sqrt(3) + 1))*sqrt(-sqrt(2)*sqrt(-I*sqrt(3) + 1)))/(x^5
- x^3 + x)) - 1/48*sqrt(6)*sqrt(-sqrt(2)*sqrt(-I*sqrt(3) + 1))*log(-(24*(x^4 - x^2)^(3/4)*(2*x^2 - I*sqrt(3) -
 1) + 12*(x^4 - x^2)^(1/4)*(-I*sqrt(3)*sqrt(2)*x^2 + sqrt(2)*(2*x^4 - x^2))*sqrt(-I*sqrt(3) + 1) + (4*sqrt(6)*
sqrt(x^4 - x^2)*(sqrt(3)*(-2*I*x^3 + I*x) - 3*x) - sqrt(6)*(sqrt(3)*sqrt(2)*(3*I*x^5 - I*x^3 - I*x) - 3*sqrt(2
)*(x^5 - 3*x^3 + x))*sqrt(-I*sqrt(3) + 1))*sqrt(-sqrt(2)*sqrt(-I*sqrt(3) + 1)))/(x^5 - x^3 + x))

Sympy [N/A]

Not integrable

Time = 3.21 (sec) , antiderivative size = 41, normalized size of antiderivative = 0.34 \[ \int \frac {\left (1+x^4\right ) \sqrt [4]{-x^2+x^4}}{1+x^4+x^8} \, dx=\int \frac {\sqrt [4]{x^{2} \left (x - 1\right ) \left (x + 1\right )} \left (x^{4} + 1\right )}{\left (x^{2} - x + 1\right ) \left (x^{2} + x + 1\right ) \left (x^{4} - x^{2} + 1\right )}\, dx \]

[In]

integrate((x**4+1)*(x**4-x**2)**(1/4)/(x**8+x**4+1),x)

[Out]

Integral((x**2*(x - 1)*(x + 1))**(1/4)*(x**4 + 1)/((x**2 - x + 1)*(x**2 + x + 1)*(x**4 - x**2 + 1)), x)

Maxima [N/A]

Not integrable

Time = 0.23 (sec) , antiderivative size = 29, normalized size of antiderivative = 0.24 \[ \int \frac {\left (1+x^4\right ) \sqrt [4]{-x^2+x^4}}{1+x^4+x^8} \, dx=\int { \frac {{\left (x^{4} - x^{2}\right )}^{\frac {1}{4}} {\left (x^{4} + 1\right )}}{x^{8} + x^{4} + 1} \,d x } \]

[In]

integrate((x^4+1)*(x^4-x^2)^(1/4)/(x^8+x^4+1),x, algorithm="maxima")

[Out]

integrate((x^4 - x^2)^(1/4)*(x^4 + 1)/(x^8 + x^4 + 1), x)

Giac [F(-2)]

Exception generated. \[ \int \frac {\left (1+x^4\right ) \sqrt [4]{-x^2+x^4}}{1+x^4+x^8} \, dx=\text {Exception raised: TypeError} \]

[In]

integrate((x^4+1)*(x^4-x^2)^(1/4)/(x^8+x^4+1),x, algorithm="giac")

[Out]

Exception raised: TypeError >> an error occurred running a Giac command:INPUT:sage2:=int(sage0,sageVARx):;OUTP
UT:proot error [1,0,0,0,1,0,0,0,1]proot error [1,0,0,0,-1,0,0,0,1]proot error [1,0,-10,0,1]proot error [1,0,-1
0,0,1]proot

Mupad [N/A]

Not integrable

Time = 5.78 (sec) , antiderivative size = 29, normalized size of antiderivative = 0.24 \[ \int \frac {\left (1+x^4\right ) \sqrt [4]{-x^2+x^4}}{1+x^4+x^8} \, dx=\int \frac {\left (x^4+1\right )\,{\left (x^4-x^2\right )}^{1/4}}{x^8+x^4+1} \,d x \]

[In]

int(((x^4 + 1)*(x^4 - x^2)^(1/4))/(x^4 + x^8 + 1),x)

[Out]

int(((x^4 + 1)*(x^4 - x^2)^(1/4))/(x^4 + x^8 + 1), x)