\(\int \frac {1+x^4}{\sqrt {-x-x^2+x^3} (-1+x^4)} \, dx\) [1891]

   Optimal result
   Rubi [C] (warning: unable to verify)
   Mathematica [A] (verified)
   Maple [B] (verified)
   Fricas [B] (verification not implemented)
   Sympy [F]
   Maxima [F]
   Giac [F]
   Mupad [B] (verification not implemented)

Optimal result

Integrand size = 29, antiderivative size = 131 \[ \int \frac {1+x^4}{\sqrt {-x-x^2+x^3} \left (-1+x^4\right )} \, dx=-\arctan \left (\frac {\sqrt {-x-x^2+x^3}}{-1-x+x^2}\right )-\frac {1}{2} \sqrt {\frac {1}{5}+\frac {2 i}{5}} \arctan \left (\frac {\sqrt {1-2 i} \sqrt {-x-x^2+x^3}}{-1-x+x^2}\right )-\frac {1}{2} \sqrt {\frac {1}{5}-\frac {2 i}{5}} \arctan \left (\frac {\sqrt {1+2 i} \sqrt {-x-x^2+x^3}}{-1-x+x^2}\right ) \]

[Out]

-arctan((x^3-x^2-x)^(1/2)/(x^2-x-1))-1/10*(5+10*I)^(1/2)*arctan((1-2*I)^(1/2)*(x^3-x^2-x)^(1/2)/(x^2-x-1))-1/1
0*(5-10*I)^(1/2)*arctan((1+2*I)^(1/2)*(x^3-x^2-x)^(1/2)/(x^2-x-1))

Rubi [C] (warning: unable to verify)

Result contains higher order function than in optimal. Order 4 vs. order 3 in optimal.

Time = 1.18 (sec) , antiderivative size = 611, normalized size of antiderivative = 4.66, number of steps used = 27, number of rules used = 8, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.276, Rules used = {2081, 6857, 730, 1112, 948, 174, 552, 551} \[ \int \frac {1+x^4}{\sqrt {-x-x^2+x^3} \left (-1+x^4\right )} \, dx=\frac {\sqrt {x} \sqrt {-\left (\left (1-\sqrt {5}\right ) x\right )-2} \sqrt {\frac {\left (1+\sqrt {5}\right ) x+2}{\left (1-\sqrt {5}\right ) x+2}} \operatorname {EllipticF}\left (\arcsin \left (\frac {\sqrt {2} \sqrt [4]{5} \sqrt {x}}{\sqrt {-\left (\left (1-\sqrt {5}\right ) x\right )-2}}\right ),\frac {1}{10} \left (5-\sqrt {5}\right )\right )}{\sqrt [4]{5} \sqrt {\frac {1}{\left (1-\sqrt {5}\right ) x+2}} \sqrt {x^3-x^2-x}}-\frac {\sqrt {3+\sqrt {5}} \sqrt {x} \sqrt {2 x+\sqrt {5}-1} \sqrt {1-\frac {2 x}{1+\sqrt {5}}} \operatorname {EllipticPi}\left (\frac {1}{2} \left (-1-\sqrt {5}\right ),\arcsin \left (\sqrt {\frac {2}{1+\sqrt {5}}} \sqrt {x}\right ),\frac {1}{2} \left (-3-\sqrt {5}\right )\right )}{2 \sqrt {x^3-x^2-x}}-\frac {\sqrt {3+\sqrt {5}} \sqrt {x} \sqrt {2 x+\sqrt {5}-1} \sqrt {1-\frac {2 x}{1+\sqrt {5}}} \operatorname {EllipticPi}\left (-\frac {1}{2} i \left (1+\sqrt {5}\right ),\arcsin \left (\sqrt {\frac {2}{1+\sqrt {5}}} \sqrt {x}\right ),\frac {1}{2} \left (-3-\sqrt {5}\right )\right )}{2 \sqrt {x^3-x^2-x}}-\frac {\sqrt {3+\sqrt {5}} \sqrt {x} \sqrt {2 x+\sqrt {5}-1} \sqrt {1-\frac {2 x}{1+\sqrt {5}}} \operatorname {EllipticPi}\left (\frac {1}{2} i \left (1+\sqrt {5}\right ),\arcsin \left (\sqrt {\frac {2}{1+\sqrt {5}}} \sqrt {x}\right ),\frac {1}{2} \left (-3-\sqrt {5}\right )\right )}{2 \sqrt {x^3-x^2-x}}-\frac {\sqrt {3+\sqrt {5}} \sqrt {x} \sqrt {2 x+\sqrt {5}-1} \sqrt {1-\frac {2 x}{1+\sqrt {5}}} \operatorname {EllipticPi}\left (\frac {1}{2} \left (1+\sqrt {5}\right ),\arcsin \left (\sqrt {\frac {2}{1+\sqrt {5}}} \sqrt {x}\right ),\frac {1}{2} \left (-3-\sqrt {5}\right )\right )}{2 \sqrt {x^3-x^2-x}} \]

[In]

Int[(1 + x^4)/(Sqrt[-x - x^2 + x^3]*(-1 + x^4)),x]

[Out]

(Sqrt[x]*Sqrt[-2 - (1 - Sqrt[5])*x]*Sqrt[(2 + (1 + Sqrt[5])*x)/(2 + (1 - Sqrt[5])*x)]*EllipticF[ArcSin[(Sqrt[2
]*5^(1/4)*Sqrt[x])/Sqrt[-2 - (1 - Sqrt[5])*x]], (5 - Sqrt[5])/10])/(5^(1/4)*Sqrt[(2 + (1 - Sqrt[5])*x)^(-1)]*S
qrt[-x - x^2 + x^3]) - (Sqrt[3 + Sqrt[5]]*Sqrt[x]*Sqrt[-1 + Sqrt[5] + 2*x]*Sqrt[1 - (2*x)/(1 + Sqrt[5])]*Ellip
ticPi[(-1 - Sqrt[5])/2, ArcSin[Sqrt[2/(1 + Sqrt[5])]*Sqrt[x]], (-3 - Sqrt[5])/2])/(2*Sqrt[-x - x^2 + x^3]) - (
Sqrt[3 + Sqrt[5]]*Sqrt[x]*Sqrt[-1 + Sqrt[5] + 2*x]*Sqrt[1 - (2*x)/(1 + Sqrt[5])]*EllipticPi[(-1/2*I)*(1 + Sqrt
[5]), ArcSin[Sqrt[2/(1 + Sqrt[5])]*Sqrt[x]], (-3 - Sqrt[5])/2])/(2*Sqrt[-x - x^2 + x^3]) - (Sqrt[3 + Sqrt[5]]*
Sqrt[x]*Sqrt[-1 + Sqrt[5] + 2*x]*Sqrt[1 - (2*x)/(1 + Sqrt[5])]*EllipticPi[(I/2)*(1 + Sqrt[5]), ArcSin[Sqrt[2/(
1 + Sqrt[5])]*Sqrt[x]], (-3 - Sqrt[5])/2])/(2*Sqrt[-x - x^2 + x^3]) - (Sqrt[3 + Sqrt[5]]*Sqrt[x]*Sqrt[-1 + Sqr
t[5] + 2*x]*Sqrt[1 - (2*x)/(1 + Sqrt[5])]*EllipticPi[(1 + Sqrt[5])/2, ArcSin[Sqrt[2/(1 + Sqrt[5])]*Sqrt[x]], (
-3 - Sqrt[5])/2])/(2*Sqrt[-x - x^2 + x^3])

Rule 174

Int[1/(((a_.) + (b_.)*(x_))*Sqrt[(c_.) + (d_.)*(x_)]*Sqrt[(e_.) + (f_.)*(x_)]*Sqrt[(g_.) + (h_.)*(x_)]), x_Sym
bol] :> Dist[-2, Subst[Int[1/(Simp[b*c - a*d - b*x^2, x]*Sqrt[Simp[(d*e - c*f)/d + f*(x^2/d), x]]*Sqrt[Simp[(d
*g - c*h)/d + h*(x^2/d), x]]), x], x, Sqrt[c + d*x]], x] /; FreeQ[{a, b, c, d, e, f, g, h}, x] && GtQ[(d*e - c
*f)/d, 0]

Rule 551

Int[1/(((a_) + (b_.)*(x_)^2)*Sqrt[(c_) + (d_.)*(x_)^2]*Sqrt[(e_) + (f_.)*(x_)^2]), x_Symbol] :> Simp[(1/(a*Sqr
t[c]*Sqrt[e]*Rt[-d/c, 2]))*EllipticPi[b*(c/(a*d)), ArcSin[Rt[-d/c, 2]*x], c*(f/(d*e))], x] /; FreeQ[{a, b, c,
d, e, f}, x] &&  !GtQ[d/c, 0] && GtQ[c, 0] && GtQ[e, 0] &&  !( !GtQ[f/e, 0] && SimplerSqrtQ[-f/e, -d/c])

Rule 552

Int[1/(((a_) + (b_.)*(x_)^2)*Sqrt[(c_) + (d_.)*(x_)^2]*Sqrt[(e_) + (f_.)*(x_)^2]), x_Symbol] :> Dist[Sqrt[1 +
(d/c)*x^2]/Sqrt[c + d*x^2], Int[1/((a + b*x^2)*Sqrt[1 + (d/c)*x^2]*Sqrt[e + f*x^2]), x], x] /; FreeQ[{a, b, c,
 d, e, f}, x] &&  !GtQ[c, 0]

Rule 730

Int[(x_)^(m_)/Sqrt[(a_) + (b_.)*(x_) + (c_.)*(x_)^2], x_Symbol] :> Dist[2, Subst[Int[x^(2*m + 1)/Sqrt[a + b*x^
2 + c*x^4], x], x, Sqrt[x]], x] /; FreeQ[{a, b, c}, x] && NeQ[b^2 - 4*a*c, 0] && EqQ[m^2, 1/4]

Rule 948

Int[1/(((d_.) + (e_.)*(x_))*Sqrt[(f_.) + (g_.)*(x_)]*Sqrt[(a_.) + (b_.)*(x_) + (c_.)*(x_)^2]), x_Symbol] :> Wi
th[{q = Rt[b^2 - 4*a*c, 2]}, Dist[Sqrt[b - q + 2*c*x]*(Sqrt[b + q + 2*c*x]/Sqrt[a + b*x + c*x^2]), Int[1/((d +
 e*x)*Sqrt[f + g*x]*Sqrt[b - q + 2*c*x]*Sqrt[b + q + 2*c*x]), x], x]] /; FreeQ[{a, b, c, d, e, f, g}, x] && Ne
Q[e*f - d*g, 0] && NeQ[b^2 - 4*a*c, 0] && NeQ[c*d^2 - b*d*e + a*e^2, 0]

Rule 1112

Int[1/Sqrt[(a_) + (b_.)*(x_)^2 + (c_.)*(x_)^4], x_Symbol] :> With[{q = Rt[b^2 - 4*a*c, 2]}, Simp[Sqrt[(2*a + (
b - q)*x^2)/(2*a + (b + q)*x^2)]*(Sqrt[(2*a + (b + q)*x^2)/q]/(2*Sqrt[a + b*x^2 + c*x^4]*Sqrt[a/(2*a + (b + q)
*x^2)]))*EllipticF[ArcSin[x/Sqrt[(2*a + (b + q)*x^2)/(2*q)]], (b + q)/(2*q)], x]] /; FreeQ[{a, b, c}, x] && Gt
Q[b^2 - 4*a*c, 0] && LtQ[a, 0] && GtQ[c, 0]

Rule 2081

Int[(u_.)*(P_)^(p_.), x_Symbol] :> With[{m = MinimumMonomialExponent[P, x]}, Dist[P^FracPart[p]/(x^(m*FracPart
[p])*Distrib[1/x^m, P]^FracPart[p]), Int[u*x^(m*p)*Distrib[1/x^m, P]^p, x], x]] /; FreeQ[p, x] &&  !IntegerQ[p
] && SumQ[P] && EveryQ[BinomialQ[#1, x] & , P] &&  !PolyQ[P, x, 2]

Rule 6857

Int[(u_)/((a_) + (b_.)*(x_)^(n_)), x_Symbol] :> With[{v = RationalFunctionExpand[u/(a + b*x^n), x]}, Int[v, x]
 /; SumQ[v]] /; FreeQ[{a, b}, x] && IGtQ[n, 0]

Rubi steps \begin{align*} \text {integral}& = \frac {\left (\sqrt {x} \sqrt {-1-x+x^2}\right ) \int \frac {1+x^4}{\sqrt {x} \sqrt {-1-x+x^2} \left (-1+x^4\right )} \, dx}{\sqrt {-x-x^2+x^3}} \\ & = \frac {\left (\sqrt {x} \sqrt {-1-x+x^2}\right ) \int \left (\frac {1}{\sqrt {x} \sqrt {-1-x+x^2}}+\frac {2}{\sqrt {x} \sqrt {-1-x+x^2} \left (-1+x^4\right )}\right ) \, dx}{\sqrt {-x-x^2+x^3}} \\ & = \frac {\left (\sqrt {x} \sqrt {-1-x+x^2}\right ) \int \frac {1}{\sqrt {x} \sqrt {-1-x+x^2}} \, dx}{\sqrt {-x-x^2+x^3}}+\frac {\left (2 \sqrt {x} \sqrt {-1-x+x^2}\right ) \int \frac {1}{\sqrt {x} \sqrt {-1-x+x^2} \left (-1+x^4\right )} \, dx}{\sqrt {-x-x^2+x^3}} \\ & = \frac {\left (2 \sqrt {x} \sqrt {-1-x+x^2}\right ) \int \left (-\frac {1}{2 \sqrt {x} \left (1-x^2\right ) \sqrt {-1-x+x^2}}-\frac {1}{2 \sqrt {x} \left (1+x^2\right ) \sqrt {-1-x+x^2}}\right ) \, dx}{\sqrt {-x-x^2+x^3}}+\frac {\left (2 \sqrt {x} \sqrt {-1-x+x^2}\right ) \text {Subst}\left (\int \frac {1}{\sqrt {-1-x^2+x^4}} \, dx,x,\sqrt {x}\right )}{\sqrt {-x-x^2+x^3}} \\ & = \frac {\sqrt {x} \sqrt {-2-\left (1-\sqrt {5}\right ) x} \sqrt {\frac {2+\left (1+\sqrt {5}\right ) x}{2+\left (1-\sqrt {5}\right ) x}} \operatorname {EllipticF}\left (\arcsin \left (\frac {\sqrt {2} \sqrt [4]{5} \sqrt {x}}{\sqrt {-2-\left (1-\sqrt {5}\right ) x}}\right ),\frac {1}{10} \left (5-\sqrt {5}\right )\right )}{\sqrt [4]{5} \sqrt {\frac {1}{2+\left (1-\sqrt {5}\right ) x}} \sqrt {-x-x^2+x^3}}-\frac {\left (\sqrt {x} \sqrt {-1-x+x^2}\right ) \int \frac {1}{\sqrt {x} \left (1-x^2\right ) \sqrt {-1-x+x^2}} \, dx}{\sqrt {-x-x^2+x^3}}-\frac {\left (\sqrt {x} \sqrt {-1-x+x^2}\right ) \int \frac {1}{\sqrt {x} \left (1+x^2\right ) \sqrt {-1-x+x^2}} \, dx}{\sqrt {-x-x^2+x^3}} \\ & = \frac {\sqrt {x} \sqrt {-2-\left (1-\sqrt {5}\right ) x} \sqrt {\frac {2+\left (1+\sqrt {5}\right ) x}{2+\left (1-\sqrt {5}\right ) x}} \operatorname {EllipticF}\left (\arcsin \left (\frac {\sqrt {2} \sqrt [4]{5} \sqrt {x}}{\sqrt {-2-\left (1-\sqrt {5}\right ) x}}\right ),\frac {1}{10} \left (5-\sqrt {5}\right )\right )}{\sqrt [4]{5} \sqrt {\frac {1}{2+\left (1-\sqrt {5}\right ) x}} \sqrt {-x-x^2+x^3}}-\frac {\left (\sqrt {x} \sqrt {-1-x+x^2}\right ) \int \left (\frac {i}{2 (i-x) \sqrt {x} \sqrt {-1-x+x^2}}+\frac {i}{2 \sqrt {x} (i+x) \sqrt {-1-x+x^2}}\right ) \, dx}{\sqrt {-x-x^2+x^3}}-\frac {\left (\sqrt {x} \sqrt {-1-x+x^2}\right ) \int \left (\frac {1}{2 (1-x) \sqrt {x} \sqrt {-1-x+x^2}}+\frac {1}{2 \sqrt {x} (1+x) \sqrt {-1-x+x^2}}\right ) \, dx}{\sqrt {-x-x^2+x^3}} \\ & = \frac {\sqrt {x} \sqrt {-2-\left (1-\sqrt {5}\right ) x} \sqrt {\frac {2+\left (1+\sqrt {5}\right ) x}{2+\left (1-\sqrt {5}\right ) x}} \operatorname {EllipticF}\left (\arcsin \left (\frac {\sqrt {2} \sqrt [4]{5} \sqrt {x}}{\sqrt {-2-\left (1-\sqrt {5}\right ) x}}\right ),\frac {1}{10} \left (5-\sqrt {5}\right )\right )}{\sqrt [4]{5} \sqrt {\frac {1}{2+\left (1-\sqrt {5}\right ) x}} \sqrt {-x-x^2+x^3}}-\frac {\left (i \sqrt {x} \sqrt {-1-x+x^2}\right ) \int \frac {1}{(i-x) \sqrt {x} \sqrt {-1-x+x^2}} \, dx}{2 \sqrt {-x-x^2+x^3}}-\frac {\left (i \sqrt {x} \sqrt {-1-x+x^2}\right ) \int \frac {1}{\sqrt {x} (i+x) \sqrt {-1-x+x^2}} \, dx}{2 \sqrt {-x-x^2+x^3}}-\frac {\left (\sqrt {x} \sqrt {-1-x+x^2}\right ) \int \frac {1}{(1-x) \sqrt {x} \sqrt {-1-x+x^2}} \, dx}{2 \sqrt {-x-x^2+x^3}}-\frac {\left (\sqrt {x} \sqrt {-1-x+x^2}\right ) \int \frac {1}{\sqrt {x} (1+x) \sqrt {-1-x+x^2}} \, dx}{2 \sqrt {-x-x^2+x^3}} \\ & = \frac {\sqrt {x} \sqrt {-2-\left (1-\sqrt {5}\right ) x} \sqrt {\frac {2+\left (1+\sqrt {5}\right ) x}{2+\left (1-\sqrt {5}\right ) x}} \operatorname {EllipticF}\left (\arcsin \left (\frac {\sqrt {2} \sqrt [4]{5} \sqrt {x}}{\sqrt {-2-\left (1-\sqrt {5}\right ) x}}\right ),\frac {1}{10} \left (5-\sqrt {5}\right )\right )}{\sqrt [4]{5} \sqrt {\frac {1}{2+\left (1-\sqrt {5}\right ) x}} \sqrt {-x-x^2+x^3}}-\frac {\left (i \sqrt {x} \sqrt {-1-\sqrt {5}+2 x} \sqrt {-1+\sqrt {5}+2 x}\right ) \int \frac {1}{(i-x) \sqrt {x} \sqrt {-1-\sqrt {5}+2 x} \sqrt {-1+\sqrt {5}+2 x}} \, dx}{2 \sqrt {-x-x^2+x^3}}-\frac {\left (i \sqrt {x} \sqrt {-1-\sqrt {5}+2 x} \sqrt {-1+\sqrt {5}+2 x}\right ) \int \frac {1}{\sqrt {x} (i+x) \sqrt {-1-\sqrt {5}+2 x} \sqrt {-1+\sqrt {5}+2 x}} \, dx}{2 \sqrt {-x-x^2+x^3}}-\frac {\left (\sqrt {x} \sqrt {-1-\sqrt {5}+2 x} \sqrt {-1+\sqrt {5}+2 x}\right ) \int \frac {1}{(1-x) \sqrt {x} \sqrt {-1-\sqrt {5}+2 x} \sqrt {-1+\sqrt {5}+2 x}} \, dx}{2 \sqrt {-x-x^2+x^3}}-\frac {\left (\sqrt {x} \sqrt {-1-\sqrt {5}+2 x} \sqrt {-1+\sqrt {5}+2 x}\right ) \int \frac {1}{\sqrt {x} (1+x) \sqrt {-1-\sqrt {5}+2 x} \sqrt {-1+\sqrt {5}+2 x}} \, dx}{2 \sqrt {-x-x^2+x^3}} \\ & = \frac {\sqrt {x} \sqrt {-2-\left (1-\sqrt {5}\right ) x} \sqrt {\frac {2+\left (1+\sqrt {5}\right ) x}{2+\left (1-\sqrt {5}\right ) x}} \operatorname {EllipticF}\left (\arcsin \left (\frac {\sqrt {2} \sqrt [4]{5} \sqrt {x}}{\sqrt {-2-\left (1-\sqrt {5}\right ) x}}\right ),\frac {1}{10} \left (5-\sqrt {5}\right )\right )}{\sqrt [4]{5} \sqrt {\frac {1}{2+\left (1-\sqrt {5}\right ) x}} \sqrt {-x-x^2+x^3}}+\frac {\left (i \sqrt {x} \sqrt {-1-\sqrt {5}+2 x} \sqrt {-1+\sqrt {5}+2 x}\right ) \text {Subst}\left (\int \frac {1}{\left (-i-x^2\right ) \sqrt {-1-\sqrt {5}+2 x^2} \sqrt {-1+\sqrt {5}+2 x^2}} \, dx,x,\sqrt {x}\right )}{\sqrt {-x-x^2+x^3}}+\frac {\left (i \sqrt {x} \sqrt {-1-\sqrt {5}+2 x} \sqrt {-1+\sqrt {5}+2 x}\right ) \text {Subst}\left (\int \frac {1}{\left (-i+x^2\right ) \sqrt {-1-\sqrt {5}+2 x^2} \sqrt {-1+\sqrt {5}+2 x^2}} \, dx,x,\sqrt {x}\right )}{\sqrt {-x-x^2+x^3}}+\frac {\left (\sqrt {x} \sqrt {-1-\sqrt {5}+2 x} \sqrt {-1+\sqrt {5}+2 x}\right ) \text {Subst}\left (\int \frac {1}{\left (-1-x^2\right ) \sqrt {-1-\sqrt {5}+2 x^2} \sqrt {-1+\sqrt {5}+2 x^2}} \, dx,x,\sqrt {x}\right )}{\sqrt {-x-x^2+x^3}}+\frac {\left (\sqrt {x} \sqrt {-1-\sqrt {5}+2 x} \sqrt {-1+\sqrt {5}+2 x}\right ) \text {Subst}\left (\int \frac {1}{\left (-1+x^2\right ) \sqrt {-1-\sqrt {5}+2 x^2} \sqrt {-1+\sqrt {5}+2 x^2}} \, dx,x,\sqrt {x}\right )}{\sqrt {-x-x^2+x^3}} \\ & = \frac {\sqrt {x} \sqrt {-2-\left (1-\sqrt {5}\right ) x} \sqrt {\frac {2+\left (1+\sqrt {5}\right ) x}{2+\left (1-\sqrt {5}\right ) x}} \operatorname {EllipticF}\left (\arcsin \left (\frac {\sqrt {2} \sqrt [4]{5} \sqrt {x}}{\sqrt {-2-\left (1-\sqrt {5}\right ) x}}\right ),\frac {1}{10} \left (5-\sqrt {5}\right )\right )}{\sqrt [4]{5} \sqrt {\frac {1}{2+\left (1-\sqrt {5}\right ) x}} \sqrt {-x-x^2+x^3}}+\frac {\left (i \sqrt {x} \sqrt {-1+\sqrt {5}+2 x} \sqrt {1-\frac {2 x}{1+\sqrt {5}}}\right ) \text {Subst}\left (\int \frac {1}{\left (-i-x^2\right ) \sqrt {-1+\sqrt {5}+2 x^2} \sqrt {1+\frac {2 x^2}{-1-\sqrt {5}}}} \, dx,x,\sqrt {x}\right )}{\sqrt {-x-x^2+x^3}}+\frac {\left (i \sqrt {x} \sqrt {-1+\sqrt {5}+2 x} \sqrt {1-\frac {2 x}{1+\sqrt {5}}}\right ) \text {Subst}\left (\int \frac {1}{\left (-i+x^2\right ) \sqrt {-1+\sqrt {5}+2 x^2} \sqrt {1+\frac {2 x^2}{-1-\sqrt {5}}}} \, dx,x,\sqrt {x}\right )}{\sqrt {-x-x^2+x^3}}+\frac {\left (\sqrt {x} \sqrt {-1+\sqrt {5}+2 x} \sqrt {1-\frac {2 x}{1+\sqrt {5}}}\right ) \text {Subst}\left (\int \frac {1}{\left (-1-x^2\right ) \sqrt {-1+\sqrt {5}+2 x^2} \sqrt {1+\frac {2 x^2}{-1-\sqrt {5}}}} \, dx,x,\sqrt {x}\right )}{\sqrt {-x-x^2+x^3}}+\frac {\left (\sqrt {x} \sqrt {-1+\sqrt {5}+2 x} \sqrt {1-\frac {2 x}{1+\sqrt {5}}}\right ) \text {Subst}\left (\int \frac {1}{\left (-1+x^2\right ) \sqrt {-1+\sqrt {5}+2 x^2} \sqrt {1+\frac {2 x^2}{-1-\sqrt {5}}}} \, dx,x,\sqrt {x}\right )}{\sqrt {-x-x^2+x^3}} \\ & = \frac {\sqrt {x} \sqrt {-2-\left (1-\sqrt {5}\right ) x} \sqrt {\frac {2+\left (1+\sqrt {5}\right ) x}{2+\left (1-\sqrt {5}\right ) x}} \operatorname {EllipticF}\left (\arcsin \left (\frac {\sqrt {2} \sqrt [4]{5} \sqrt {x}}{\sqrt {-2-\left (1-\sqrt {5}\right ) x}}\right ),\frac {1}{10} \left (5-\sqrt {5}\right )\right )}{\sqrt [4]{5} \sqrt {\frac {1}{2+\left (1-\sqrt {5}\right ) x}} \sqrt {-x-x^2+x^3}}-\frac {\sqrt {3+\sqrt {5}} \sqrt {x} \sqrt {-1+\sqrt {5}+2 x} \sqrt {1-\frac {2 x}{1+\sqrt {5}}} \operatorname {EllipticPi}\left (\frac {1}{2} \left (-1-\sqrt {5}\right ),\arcsin \left (\sqrt {\frac {2}{1+\sqrt {5}}} \sqrt {x}\right ),\frac {1}{2} \left (-3-\sqrt {5}\right )\right )}{2 \sqrt {-x-x^2+x^3}}-\frac {\sqrt {3+\sqrt {5}} \sqrt {x} \sqrt {-1+\sqrt {5}+2 x} \sqrt {1-\frac {2 x}{1+\sqrt {5}}} \operatorname {EllipticPi}\left (-\frac {1}{2} i \left (1+\sqrt {5}\right ),\arcsin \left (\sqrt {\frac {2}{1+\sqrt {5}}} \sqrt {x}\right ),\frac {1}{2} \left (-3-\sqrt {5}\right )\right )}{2 \sqrt {-x-x^2+x^3}}-\frac {\sqrt {3+\sqrt {5}} \sqrt {x} \sqrt {-1+\sqrt {5}+2 x} \sqrt {1-\frac {2 x}{1+\sqrt {5}}} \operatorname {EllipticPi}\left (\frac {1}{2} i \left (1+\sqrt {5}\right ),\arcsin \left (\sqrt {\frac {2}{1+\sqrt {5}}} \sqrt {x}\right ),\frac {1}{2} \left (-3-\sqrt {5}\right )\right )}{2 \sqrt {-x-x^2+x^3}}-\frac {\sqrt {3+\sqrt {5}} \sqrt {x} \sqrt {-1+\sqrt {5}+2 x} \sqrt {1-\frac {2 x}{1+\sqrt {5}}} \operatorname {EllipticPi}\left (\frac {1}{2} \left (1+\sqrt {5}\right ),\arcsin \left (\sqrt {\frac {2}{1+\sqrt {5}}} \sqrt {x}\right ),\frac {1}{2} \left (-3-\sqrt {5}\right )\right )}{2 \sqrt {-x-x^2+x^3}} \\ \end{align*}

Mathematica [A] (verified)

Time = 0.60 (sec) , antiderivative size = 135, normalized size of antiderivative = 1.03 \[ \int \frac {1+x^4}{\sqrt {-x-x^2+x^3} \left (-1+x^4\right )} \, dx=-\frac {\sqrt {x} \sqrt {-1-x+x^2} \left (2 \sqrt {5} \arctan \left (\frac {\sqrt {x}}{\sqrt {-1-x+x^2}}\right )+\sqrt {1+2 i} \arctan \left (\frac {\sqrt {1-2 i} \sqrt {x}}{\sqrt {-1-x+x^2}}\right )+\sqrt {1-2 i} \arctan \left (\frac {\sqrt {1+2 i} \sqrt {x}}{\sqrt {-1-x+x^2}}\right )\right )}{2 \sqrt {5} \sqrt {x \left (-1-x+x^2\right )}} \]

[In]

Integrate[(1 + x^4)/(Sqrt[-x - x^2 + x^3]*(-1 + x^4)),x]

[Out]

-1/2*(Sqrt[x]*Sqrt[-1 - x + x^2]*(2*Sqrt[5]*ArcTan[Sqrt[x]/Sqrt[-1 - x + x^2]] + Sqrt[1 + 2*I]*ArcTan[(Sqrt[1
- 2*I]*Sqrt[x])/Sqrt[-1 - x + x^2]] + Sqrt[1 - 2*I]*ArcTan[(Sqrt[1 + 2*I]*Sqrt[x])/Sqrt[-1 - x + x^2]]))/(Sqrt
[5]*Sqrt[x*(-1 - x + x^2)])

Maple [B] (verified)

Leaf count of result is larger than twice the leaf count of optimal. \(224\) vs. \(2(105)=210\).

Time = 6.07 (sec) , antiderivative size = 225, normalized size of antiderivative = 1.72

method result size
default \(-\frac {-\sqrt {5}\, \ln \left (\frac {-\sqrt {x \left (x^{2}-x -1\right )}\, \sqrt {-2+2 \sqrt {5}}+x \sqrt {5}+x^{2}-x -1}{x}\right )+\sqrt {5}\, \ln \left (\frac {\sqrt {x \left (x^{2}-x -1\right )}\, \sqrt {-2+2 \sqrt {5}}+x \sqrt {5}+x^{2}-x -1}{x}\right )+\left (-5-\sqrt {5}\right ) \arctan \left (\frac {\sqrt {-2+2 \sqrt {5}}\, x +2 \sqrt {x \left (x^{2}-x -1\right )}}{x \sqrt {2+2 \sqrt {5}}}\right )-10 \arctan \left (\frac {\sqrt {x \left (x^{2}-x -1\right )}}{x}\right ) \sqrt {2+2 \sqrt {5}}+\left (5+\sqrt {5}\right ) \arctan \left (\frac {\sqrt {-2+2 \sqrt {5}}\, x -2 \sqrt {x \left (x^{2}-x -1\right )}}{x \sqrt {2+2 \sqrt {5}}}\right )}{10 \sqrt {2+2 \sqrt {5}}}\) \(225\)
pseudoelliptic \(-\frac {-\sqrt {5}\, \ln \left (\frac {-\sqrt {x \left (x^{2}-x -1\right )}\, \sqrt {-2+2 \sqrt {5}}+x \sqrt {5}+x^{2}-x -1}{x}\right )+\sqrt {5}\, \ln \left (\frac {\sqrt {x \left (x^{2}-x -1\right )}\, \sqrt {-2+2 \sqrt {5}}+x \sqrt {5}+x^{2}-x -1}{x}\right )+\left (-5-\sqrt {5}\right ) \arctan \left (\frac {\sqrt {-2+2 \sqrt {5}}\, x +2 \sqrt {x \left (x^{2}-x -1\right )}}{x \sqrt {2+2 \sqrt {5}}}\right )-10 \arctan \left (\frac {\sqrt {x \left (x^{2}-x -1\right )}}{x}\right ) \sqrt {2+2 \sqrt {5}}+\left (5+\sqrt {5}\right ) \arctan \left (\frac {\sqrt {-2+2 \sqrt {5}}\, x -2 \sqrt {x \left (x^{2}-x -1\right )}}{x \sqrt {2+2 \sqrt {5}}}\right )}{10 \sqrt {2+2 \sqrt {5}}}\) \(225\)
trager \(\text {Expression too large to display}\) \(915\)
elliptic \(\text {Expression too large to display}\) \(1685\)

[In]

int((x^4+1)/(x^3-x^2-x)^(1/2)/(x^4-1),x,method=_RETURNVERBOSE)

[Out]

-1/10/(2+2*5^(1/2))^(1/2)*(-5^(1/2)*ln((-(x*(x^2-x-1))^(1/2)*(-2+2*5^(1/2))^(1/2)+x*5^(1/2)+x^2-x-1)/x)+5^(1/2
)*ln(((x*(x^2-x-1))^(1/2)*(-2+2*5^(1/2))^(1/2)+x*5^(1/2)+x^2-x-1)/x)+(-5-5^(1/2))*arctan(((-2+2*5^(1/2))^(1/2)
*x+2*(x*(x^2-x-1))^(1/2))/x/(2+2*5^(1/2))^(1/2))-10*arctan((x*(x^2-x-1))^(1/2)/x)*(2+2*5^(1/2))^(1/2)+(5+5^(1/
2))*arctan(((-2+2*5^(1/2))^(1/2)*x-2*(x*(x^2-x-1))^(1/2))/x/(2+2*5^(1/2))^(1/2)))

Fricas [B] (verification not implemented)

Both result and optimal contain complex but leaf count of result is larger than twice the leaf count of optimal. 324 vs. \(2 (97) = 194\).

Time = 0.34 (sec) , antiderivative size = 324, normalized size of antiderivative = 2.47 \[ \int \frac {1+x^4}{\sqrt {-x-x^2+x^3} \left (-1+x^4\right )} \, dx=-\frac {1}{40} \, \sqrt {5} \sqrt {-2 i - 1} \log \left (\frac {5 \, x^{4} + \left (20 i - 10\right ) \, x^{3} - 2 \, \sqrt {5} \sqrt {-2 i - 1} \sqrt {x^{3} - x^{2} - x} {\left (-\left (2 i - 1\right ) \, x^{2} + \left (2 i + 4\right ) \, x + 2 i - 1\right )} - \left (20 i + 30\right ) \, x^{2} - \left (20 i - 10\right ) \, x + 5}{x^{4} + 2 \, x^{2} + 1}\right ) + \frac {1}{40} \, \sqrt {5} \sqrt {-2 i - 1} \log \left (\frac {5 \, x^{4} + \left (20 i - 10\right ) \, x^{3} - 2 \, \sqrt {5} \sqrt {-2 i - 1} \sqrt {x^{3} - x^{2} - x} {\left (\left (2 i - 1\right ) \, x^{2} - \left (2 i + 4\right ) \, x - 2 i + 1\right )} - \left (20 i + 30\right ) \, x^{2} - \left (20 i - 10\right ) \, x + 5}{x^{4} + 2 \, x^{2} + 1}\right ) - \frac {1}{40} \, \sqrt {5} \sqrt {2 i - 1} \log \left (\frac {5 \, x^{4} - \left (20 i + 10\right ) \, x^{3} - 2 \, \sqrt {5} \sqrt {2 i - 1} \sqrt {x^{3} - x^{2} - x} {\left (\left (2 i + 1\right ) \, x^{2} - \left (2 i - 4\right ) \, x - 2 i - 1\right )} + \left (20 i - 30\right ) \, x^{2} + \left (20 i + 10\right ) \, x + 5}{x^{4} + 2 \, x^{2} + 1}\right ) + \frac {1}{40} \, \sqrt {5} \sqrt {2 i - 1} \log \left (\frac {5 \, x^{4} - \left (20 i + 10\right ) \, x^{3} - 2 \, \sqrt {5} \sqrt {2 i - 1} \sqrt {x^{3} - x^{2} - x} {\left (-\left (2 i + 1\right ) \, x^{2} + \left (2 i - 4\right ) \, x + 2 i + 1\right )} + \left (20 i - 30\right ) \, x^{2} + \left (20 i + 10\right ) \, x + 5}{x^{4} + 2 \, x^{2} + 1}\right ) + \frac {1}{2} \, \arctan \left (\frac {x^{2} - 2 \, x - 1}{2 \, \sqrt {x^{3} - x^{2} - x}}\right ) \]

[In]

integrate((x^4+1)/(x^3-x^2-x)^(1/2)/(x^4-1),x, algorithm="fricas")

[Out]

-1/40*sqrt(5)*sqrt(-2*I - 1)*log((5*x^4 + (20*I - 10)*x^3 - 2*sqrt(5)*sqrt(-2*I - 1)*sqrt(x^3 - x^2 - x)*(-(2*
I - 1)*x^2 + (2*I + 4)*x + 2*I - 1) - (20*I + 30)*x^2 - (20*I - 10)*x + 5)/(x^4 + 2*x^2 + 1)) + 1/40*sqrt(5)*s
qrt(-2*I - 1)*log((5*x^4 + (20*I - 10)*x^3 - 2*sqrt(5)*sqrt(-2*I - 1)*sqrt(x^3 - x^2 - x)*((2*I - 1)*x^2 - (2*
I + 4)*x - 2*I + 1) - (20*I + 30)*x^2 - (20*I - 10)*x + 5)/(x^4 + 2*x^2 + 1)) - 1/40*sqrt(5)*sqrt(2*I - 1)*log
((5*x^4 - (20*I + 10)*x^3 - 2*sqrt(5)*sqrt(2*I - 1)*sqrt(x^3 - x^2 - x)*((2*I + 1)*x^2 - (2*I - 4)*x - 2*I - 1
) + (20*I - 30)*x^2 + (20*I + 10)*x + 5)/(x^4 + 2*x^2 + 1)) + 1/40*sqrt(5)*sqrt(2*I - 1)*log((5*x^4 - (20*I +
10)*x^3 - 2*sqrt(5)*sqrt(2*I - 1)*sqrt(x^3 - x^2 - x)*(-(2*I + 1)*x^2 + (2*I - 4)*x + 2*I + 1) + (20*I - 30)*x
^2 + (20*I + 10)*x + 5)/(x^4 + 2*x^2 + 1)) + 1/2*arctan(1/2*(x^2 - 2*x - 1)/sqrt(x^3 - x^2 - x))

Sympy [F]

\[ \int \frac {1+x^4}{\sqrt {-x-x^2+x^3} \left (-1+x^4\right )} \, dx=\int \frac {x^{4} + 1}{\sqrt {x \left (x^{2} - x - 1\right )} \left (x - 1\right ) \left (x + 1\right ) \left (x^{2} + 1\right )}\, dx \]

[In]

integrate((x**4+1)/(x**3-x**2-x)**(1/2)/(x**4-1),x)

[Out]

Integral((x**4 + 1)/(sqrt(x*(x**2 - x - 1))*(x - 1)*(x + 1)*(x**2 + 1)), x)

Maxima [F]

\[ \int \frac {1+x^4}{\sqrt {-x-x^2+x^3} \left (-1+x^4\right )} \, dx=\int { \frac {x^{4} + 1}{{\left (x^{4} - 1\right )} \sqrt {x^{3} - x^{2} - x}} \,d x } \]

[In]

integrate((x^4+1)/(x^3-x^2-x)^(1/2)/(x^4-1),x, algorithm="maxima")

[Out]

integrate((x^4 + 1)/((x^4 - 1)*sqrt(x^3 - x^2 - x)), x)

Giac [F]

\[ \int \frac {1+x^4}{\sqrt {-x-x^2+x^3} \left (-1+x^4\right )} \, dx=\int { \frac {x^{4} + 1}{{\left (x^{4} - 1\right )} \sqrt {x^{3} - x^{2} - x}} \,d x } \]

[In]

integrate((x^4+1)/(x^3-x^2-x)^(1/2)/(x^4-1),x, algorithm="giac")

[Out]

integrate((x^4 + 1)/((x^4 - 1)*sqrt(x^3 - x^2 - x)), x)

Mupad [B] (verification not implemented)

Time = 5.37 (sec) , antiderivative size = 658, normalized size of antiderivative = 5.02 \[ \int \frac {1+x^4}{\sqrt {-x-x^2+x^3} \left (-1+x^4\right )} \, dx=\frac {2\,\left (\frac {\sqrt {5}}{2}+\frac {1}{2}\right )\,\sqrt {\frac {x}{\frac {\sqrt {5}}{2}+\frac {1}{2}}}\,\sqrt {\frac {x+\frac {\sqrt {5}}{2}-\frac {1}{2}}{\frac {\sqrt {5}}{2}-\frac {1}{2}}}\,\mathrm {F}\left (\mathrm {asin}\left (\sqrt {\frac {x}{\frac {\sqrt {5}}{2}+\frac {1}{2}}}\right )\middle |-\frac {\frac {\sqrt {5}}{2}+\frac {1}{2}}{\frac {\sqrt {5}}{2}-\frac {1}{2}}\right )\,\sqrt {\frac {\frac {\sqrt {5}}{2}-x+\frac {1}{2}}{\frac {\sqrt {5}}{2}+\frac {1}{2}}}}{\sqrt {x^3-x^2-\left (\frac {\sqrt {5}}{2}-\frac {1}{2}\right )\,\left (\frac {\sqrt {5}}{2}+\frac {1}{2}\right )\,x}}-\frac {\left (\frac {\sqrt {5}}{2}+\frac {1}{2}\right )\,\sqrt {\frac {x}{\frac {\sqrt {5}}{2}+\frac {1}{2}}}\,\sqrt {\frac {x+\frac {\sqrt {5}}{2}-\frac {1}{2}}{\frac {\sqrt {5}}{2}-\frac {1}{2}}}\,\sqrt {\frac {\frac {\sqrt {5}}{2}-x+\frac {1}{2}}{\frac {\sqrt {5}}{2}+\frac {1}{2}}}\,\Pi \left (-\frac {\sqrt {5}}{2}-\frac {1}{2};\mathrm {asin}\left (\sqrt {\frac {x}{\frac {\sqrt {5}}{2}+\frac {1}{2}}}\right )\middle |-\frac {\frac {\sqrt {5}}{2}+\frac {1}{2}}{\frac {\sqrt {5}}{2}-\frac {1}{2}}\right )}{\sqrt {x^3-x^2-\left (\frac {\sqrt {5}}{2}-\frac {1}{2}\right )\,\left (\frac {\sqrt {5}}{2}+\frac {1}{2}\right )\,x}}-\frac {\left (\frac {\sqrt {5}}{2}+\frac {1}{2}\right )\,\sqrt {\frac {x}{\frac {\sqrt {5}}{2}+\frac {1}{2}}}\,\sqrt {\frac {x+\frac {\sqrt {5}}{2}-\frac {1}{2}}{\frac {\sqrt {5}}{2}-\frac {1}{2}}}\,\sqrt {\frac {\frac {\sqrt {5}}{2}-x+\frac {1}{2}}{\frac {\sqrt {5}}{2}+\frac {1}{2}}}\,\Pi \left (\frac {\sqrt {5}}{2}+\frac {1}{2};\mathrm {asin}\left (\sqrt {\frac {x}{\frac {\sqrt {5}}{2}+\frac {1}{2}}}\right )\middle |-\frac {\frac {\sqrt {5}}{2}+\frac {1}{2}}{\frac {\sqrt {5}}{2}-\frac {1}{2}}\right )}{\sqrt {x^3-x^2-\left (\frac {\sqrt {5}}{2}-\frac {1}{2}\right )\,\left (\frac {\sqrt {5}}{2}+\frac {1}{2}\right )\,x}}-\frac {\left (\frac {\sqrt {5}}{2}+\frac {1}{2}\right )\,\sqrt {\frac {x}{\frac {\sqrt {5}}{2}+\frac {1}{2}}}\,\sqrt {\frac {x+\frac {\sqrt {5}}{2}-\frac {1}{2}}{\frac {\sqrt {5}}{2}-\frac {1}{2}}}\,\sqrt {\frac {\frac {\sqrt {5}}{2}-x+\frac {1}{2}}{\frac {\sqrt {5}}{2}+\frac {1}{2}}}\,\Pi \left (-\frac {\sqrt {5}\,1{}\mathrm {i}}{2}-\frac {1}{2}{}\mathrm {i};\mathrm {asin}\left (\sqrt {\frac {x}{\frac {\sqrt {5}}{2}+\frac {1}{2}}}\right )\middle |-\frac {\frac {\sqrt {5}}{2}+\frac {1}{2}}{\frac {\sqrt {5}}{2}-\frac {1}{2}}\right )}{\sqrt {x^3-x^2-\left (\frac {\sqrt {5}}{2}-\frac {1}{2}\right )\,\left (\frac {\sqrt {5}}{2}+\frac {1}{2}\right )\,x}}-\frac {\left (\frac {\sqrt {5}}{2}+\frac {1}{2}\right )\,\sqrt {\frac {x}{\frac {\sqrt {5}}{2}+\frac {1}{2}}}\,\sqrt {\frac {x+\frac {\sqrt {5}}{2}-\frac {1}{2}}{\frac {\sqrt {5}}{2}-\frac {1}{2}}}\,\sqrt {\frac {\frac {\sqrt {5}}{2}-x+\frac {1}{2}}{\frac {\sqrt {5}}{2}+\frac {1}{2}}}\,\Pi \left (\frac {\sqrt {5}\,1{}\mathrm {i}}{2}+\frac {1}{2}{}\mathrm {i};\mathrm {asin}\left (\sqrt {\frac {x}{\frac {\sqrt {5}}{2}+\frac {1}{2}}}\right )\middle |-\frac {\frac {\sqrt {5}}{2}+\frac {1}{2}}{\frac {\sqrt {5}}{2}-\frac {1}{2}}\right )}{\sqrt {x^3-x^2-\left (\frac {\sqrt {5}}{2}-\frac {1}{2}\right )\,\left (\frac {\sqrt {5}}{2}+\frac {1}{2}\right )\,x}} \]

[In]

int((x^4 + 1)/((x^4 - 1)*(x^3 - x^2 - x)^(1/2)),x)

[Out]

(2*(5^(1/2)/2 + 1/2)*(x/(5^(1/2)/2 + 1/2))^(1/2)*((x + 5^(1/2)/2 - 1/2)/(5^(1/2)/2 - 1/2))^(1/2)*ellipticF(asi
n((x/(5^(1/2)/2 + 1/2))^(1/2)), -(5^(1/2)/2 + 1/2)/(5^(1/2)/2 - 1/2))*((5^(1/2)/2 - x + 1/2)/(5^(1/2)/2 + 1/2)
)^(1/2))/(x^3 - x^2 - x*(5^(1/2)/2 - 1/2)*(5^(1/2)/2 + 1/2))^(1/2) - ((5^(1/2)/2 + 1/2)*(x/(5^(1/2)/2 + 1/2))^
(1/2)*((x + 5^(1/2)/2 - 1/2)/(5^(1/2)/2 - 1/2))^(1/2)*((5^(1/2)/2 - x + 1/2)/(5^(1/2)/2 + 1/2))^(1/2)*elliptic
Pi(- 5^(1/2)/2 - 1/2, asin((x/(5^(1/2)/2 + 1/2))^(1/2)), -(5^(1/2)/2 + 1/2)/(5^(1/2)/2 - 1/2)))/(x^3 - x^2 - x
*(5^(1/2)/2 - 1/2)*(5^(1/2)/2 + 1/2))^(1/2) - ((5^(1/2)/2 + 1/2)*(x/(5^(1/2)/2 + 1/2))^(1/2)*((x + 5^(1/2)/2 -
 1/2)/(5^(1/2)/2 - 1/2))^(1/2)*((5^(1/2)/2 - x + 1/2)/(5^(1/2)/2 + 1/2))^(1/2)*ellipticPi(5^(1/2)/2 + 1/2, asi
n((x/(5^(1/2)/2 + 1/2))^(1/2)), -(5^(1/2)/2 + 1/2)/(5^(1/2)/2 - 1/2)))/(x^3 - x^2 - x*(5^(1/2)/2 - 1/2)*(5^(1/
2)/2 + 1/2))^(1/2) - ((5^(1/2)/2 + 1/2)*(x/(5^(1/2)/2 + 1/2))^(1/2)*((x + 5^(1/2)/2 - 1/2)/(5^(1/2)/2 - 1/2))^
(1/2)*((5^(1/2)/2 - x + 1/2)/(5^(1/2)/2 + 1/2))^(1/2)*ellipticPi(- (5^(1/2)*1i)/2 - 1i/2, asin((x/(5^(1/2)/2 +
 1/2))^(1/2)), -(5^(1/2)/2 + 1/2)/(5^(1/2)/2 - 1/2)))/(x^3 - x^2 - x*(5^(1/2)/2 - 1/2)*(5^(1/2)/2 + 1/2))^(1/2
) - ((5^(1/2)/2 + 1/2)*(x/(5^(1/2)/2 + 1/2))^(1/2)*((x + 5^(1/2)/2 - 1/2)/(5^(1/2)/2 - 1/2))^(1/2)*((5^(1/2)/2
 - x + 1/2)/(5^(1/2)/2 + 1/2))^(1/2)*ellipticPi((5^(1/2)*1i)/2 + 1i/2, asin((x/(5^(1/2)/2 + 1/2))^(1/2)), -(5^
(1/2)/2 + 1/2)/(5^(1/2)/2 - 1/2)))/(x^3 - x^2 - x*(5^(1/2)/2 - 1/2)*(5^(1/2)/2 + 1/2))^(1/2)