\(\int \frac {(1+x) \sqrt [4]{x^3+x^4}}{x (-1+x^3)} \, dx\) [2060]

   Optimal result
   Rubi [A] (verified)
   Mathematica [A] (verified)
   Maple [N/A] (verified)
   Fricas [C] (verification not implemented)
   Sympy [N/A]
   Maxima [N/A]
   Giac [C] (verification not implemented)
   Mupad [N/A]

Optimal result

Integrand size = 25, antiderivative size = 148 \[ \int \frac {(1+x) \sqrt [4]{x^3+x^4}}{x \left (-1+x^3\right )} \, dx=\frac {4}{3} \sqrt [4]{2} \arctan \left (\frac {\sqrt [4]{2} x}{\sqrt [4]{x^3+x^4}}\right )-\frac {4}{3} \sqrt [4]{2} \text {arctanh}\left (\frac {\sqrt [4]{2} x}{\sqrt [4]{x^3+x^4}}\right )+\frac {1}{3} \text {RootSum}\left [1-\text {$\#$1}^4+\text {$\#$1}^8\&,\frac {-2 \log (x)+2 \log \left (\sqrt [4]{x^3+x^4}-x \text {$\#$1}\right )+\log (x) \text {$\#$1}^4-\log \left (\sqrt [4]{x^3+x^4}-x \text {$\#$1}\right ) \text {$\#$1}^4}{-\text {$\#$1}^3+2 \text {$\#$1}^7}\&\right ] \]

[Out]

Unintegrable

Rubi [A] (verified)

Time = 0.31 (sec) , antiderivative size = 125, normalized size of antiderivative = 0.84, number of steps used = 9, number of rules used = 4, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.160, Rules used = {2081, 6857, 129, 524} \[ \int \frac {(1+x) \sqrt [4]{x^3+x^4}}{x \left (-1+x^3\right )} \, dx=-\frac {4 \sqrt [4]{x^4+x^3} \operatorname {AppellF1}\left (\frac {3}{4},-\frac {5}{4},1,\frac {7}{4},-x,-\sqrt [3]{-1} x\right )}{9 \sqrt [4]{x+1}}-\frac {4 \sqrt [4]{x^4+x^3} \operatorname {AppellF1}\left (\frac {3}{4},-\frac {5}{4},1,\frac {7}{4},-x,(-1)^{2/3} x\right )}{9 \sqrt [4]{x+1}}-\frac {4 \sqrt [4]{x^4+x^3} \operatorname {AppellF1}\left (\frac {3}{4},1,-\frac {5}{4},\frac {7}{4},x,-x\right )}{9 \sqrt [4]{x+1}} \]

[In]

Int[((1 + x)*(x^3 + x^4)^(1/4))/(x*(-1 + x^3)),x]

[Out]

(-4*(x^3 + x^4)^(1/4)*AppellF1[3/4, -5/4, 1, 7/4, -x, -((-1)^(1/3)*x)])/(9*(1 + x)^(1/4)) - (4*(x^3 + x^4)^(1/
4)*AppellF1[3/4, -5/4, 1, 7/4, -x, (-1)^(2/3)*x])/(9*(1 + x)^(1/4)) - (4*(x^3 + x^4)^(1/4)*AppellF1[3/4, 1, -5
/4, 7/4, x, -x])/(9*(1 + x)^(1/4))

Rule 129

Int[((e_.)*(x_))^(p_)*((a_) + (b_.)*(x_))^(m_)*((c_) + (d_.)*(x_))^(n_), x_Symbol] :> With[{k = Denominator[p]
}, Dist[k/e, Subst[Int[x^(k*(p + 1) - 1)*(a + b*(x^k/e))^m*(c + d*(x^k/e))^n, x], x, (e*x)^(1/k)], x]] /; Free
Q[{a, b, c, d, e, m, n}, x] && NeQ[b*c - a*d, 0] && FractionQ[p] && IntegerQ[m]

Rule 524

Int[((e_.)*(x_))^(m_.)*((a_) + (b_.)*(x_)^(n_))^(p_)*((c_) + (d_.)*(x_)^(n_))^(q_), x_Symbol] :> Simp[a^p*c^q*
((e*x)^(m + 1)/(e*(m + 1)))*AppellF1[(m + 1)/n, -p, -q, 1 + (m + 1)/n, (-b)*(x^n/a), (-d)*(x^n/c)], x] /; Free
Q[{a, b, c, d, e, m, n, p, q}, x] && NeQ[b*c - a*d, 0] && NeQ[m, -1] && NeQ[m, n - 1] && (IntegerQ[p] || GtQ[a
, 0]) && (IntegerQ[q] || GtQ[c, 0])

Rule 2081

Int[(u_.)*(P_)^(p_.), x_Symbol] :> With[{m = MinimumMonomialExponent[P, x]}, Dist[P^FracPart[p]/(x^(m*FracPart
[p])*Distrib[1/x^m, P]^FracPart[p]), Int[u*x^(m*p)*Distrib[1/x^m, P]^p, x], x]] /; FreeQ[p, x] &&  !IntegerQ[p
] && SumQ[P] && EveryQ[BinomialQ[#1, x] & , P] &&  !PolyQ[P, x, 2]

Rule 6857

Int[(u_)/((a_) + (b_.)*(x_)^(n_)), x_Symbol] :> With[{v = RationalFunctionExpand[u/(a + b*x^n), x]}, Int[v, x]
 /; SumQ[v]] /; FreeQ[{a, b}, x] && IGtQ[n, 0]

Rubi steps \begin{align*} \text {integral}& = \frac {\sqrt [4]{x^3+x^4} \int \frac {(1+x)^{5/4}}{\sqrt [4]{x} \left (-1+x^3\right )} \, dx}{x^{3/4} \sqrt [4]{1+x}} \\ & = \frac {\sqrt [4]{x^3+x^4} \int \left (-\frac {(1+x)^{5/4}}{3 (1-x) \sqrt [4]{x}}-\frac {(1+x)^{5/4}}{3 \sqrt [4]{x} \left (1+\sqrt [3]{-1} x\right )}-\frac {(1+x)^{5/4}}{3 \sqrt [4]{x} \left (1-(-1)^{2/3} x\right )}\right ) \, dx}{x^{3/4} \sqrt [4]{1+x}} \\ & = -\frac {\sqrt [4]{x^3+x^4} \int \frac {(1+x)^{5/4}}{(1-x) \sqrt [4]{x}} \, dx}{3 x^{3/4} \sqrt [4]{1+x}}-\frac {\sqrt [4]{x^3+x^4} \int \frac {(1+x)^{5/4}}{\sqrt [4]{x} \left (1+\sqrt [3]{-1} x\right )} \, dx}{3 x^{3/4} \sqrt [4]{1+x}}-\frac {\sqrt [4]{x^3+x^4} \int \frac {(1+x)^{5/4}}{\sqrt [4]{x} \left (1-(-1)^{2/3} x\right )} \, dx}{3 x^{3/4} \sqrt [4]{1+x}} \\ & = -\frac {\left (4 \sqrt [4]{x^3+x^4}\right ) \text {Subst}\left (\int \frac {x^2 \left (1+x^4\right )^{5/4}}{1-x^4} \, dx,x,\sqrt [4]{x}\right )}{3 x^{3/4} \sqrt [4]{1+x}}-\frac {\left (4 \sqrt [4]{x^3+x^4}\right ) \text {Subst}\left (\int \frac {x^2 \left (1+x^4\right )^{5/4}}{1+\sqrt [3]{-1} x^4} \, dx,x,\sqrt [4]{x}\right )}{3 x^{3/4} \sqrt [4]{1+x}}-\frac {\left (4 \sqrt [4]{x^3+x^4}\right ) \text {Subst}\left (\int \frac {x^2 \left (1+x^4\right )^{5/4}}{1-(-1)^{2/3} x^4} \, dx,x,\sqrt [4]{x}\right )}{3 x^{3/4} \sqrt [4]{1+x}} \\ & = -\frac {4 \sqrt [4]{x^3+x^4} \operatorname {AppellF1}\left (\frac {3}{4},-\frac {5}{4},1,\frac {7}{4},-x,-\sqrt [3]{-1} x\right )}{9 \sqrt [4]{1+x}}-\frac {4 \sqrt [4]{x^3+x^4} \operatorname {AppellF1}\left (\frac {3}{4},-\frac {5}{4},1,\frac {7}{4},-x,(-1)^{2/3} x\right )}{9 \sqrt [4]{1+x}}-\frac {4 \sqrt [4]{x^3+x^4} \operatorname {AppellF1}\left (\frac {3}{4},1,-\frac {5}{4},\frac {7}{4},x,-x\right )}{9 \sqrt [4]{1+x}} \\ \end{align*}

Mathematica [A] (verified)

Time = 0.34 (sec) , antiderivative size = 161, normalized size of antiderivative = 1.09 \[ \int \frac {(1+x) \sqrt [4]{x^3+x^4}}{x \left (-1+x^3\right )} \, dx=\frac {x^{9/4} (1+x)^{3/4} \left (16 \sqrt [4]{2} \left (\arctan \left (\sqrt [4]{2} \sqrt [4]{\frac {x}{1+x}}\right )-\text {arctanh}\left (\sqrt [4]{2} \sqrt [4]{\frac {x}{1+x}}\right )\right )+\text {RootSum}\left [1-\text {$\#$1}^4+\text {$\#$1}^8\&,\frac {-2 \log (x)+8 \log \left (\sqrt [4]{1+x}-\sqrt [4]{x} \text {$\#$1}\right )+\log (x) \text {$\#$1}^4-4 \log \left (\sqrt [4]{1+x}-\sqrt [4]{x} \text {$\#$1}\right ) \text {$\#$1}^4}{-\text {$\#$1}^3+2 \text {$\#$1}^7}\&\right ]\right )}{12 \left (x^3 (1+x)\right )^{3/4}} \]

[In]

Integrate[((1 + x)*(x^3 + x^4)^(1/4))/(x*(-1 + x^3)),x]

[Out]

(x^(9/4)*(1 + x)^(3/4)*(16*2^(1/4)*(ArcTan[2^(1/4)*(x/(1 + x))^(1/4)] - ArcTanh[2^(1/4)*(x/(1 + x))^(1/4)]) +
RootSum[1 - #1^4 + #1^8 & , (-2*Log[x] + 8*Log[(1 + x)^(1/4) - x^(1/4)*#1] + Log[x]*#1^4 - 4*Log[(1 + x)^(1/4)
 - x^(1/4)*#1]*#1^4)/(-#1^3 + 2*#1^7) & ]))/(12*(x^3*(1 + x))^(3/4))

Maple [N/A] (verified)

Time = 8.76 (sec) , antiderivative size = 122, normalized size of antiderivative = 0.82

method result size
pseudoelliptic \(-\frac {2 \ln \left (\frac {-2^{\frac {1}{4}} x -\left (x^{3} \left (1+x \right )\right )^{\frac {1}{4}}}{2^{\frac {1}{4}} x -\left (x^{3} \left (1+x \right )\right )^{\frac {1}{4}}}\right ) 2^{\frac {1}{4}}}{3}-\frac {4 \arctan \left (\frac {2^{\frac {3}{4}} \left (x^{3} \left (1+x \right )\right )^{\frac {1}{4}}}{2 x}\right ) 2^{\frac {1}{4}}}{3}-\frac {\left (\munderset {\textit {\_R} =\operatorname {RootOf}\left (\textit {\_Z}^{8}-\textit {\_Z}^{4}+1\right )}{\sum }\frac {\left (\textit {\_R}^{4}-2\right ) \ln \left (\frac {-\textit {\_R} x +\left (x^{3} \left (1+x \right )\right )^{\frac {1}{4}}}{x}\right )}{\textit {\_R}^{3} \left (2 \textit {\_R}^{4}-1\right )}\right )}{3}\) \(122\)
trager \(\text {Expression too large to display}\) \(3025\)

[In]

int((1+x)*(x^4+x^3)^(1/4)/x/(x^3-1),x,method=_RETURNVERBOSE)

[Out]

-2/3*ln((-2^(1/4)*x-(x^3*(1+x))^(1/4))/(2^(1/4)*x-(x^3*(1+x))^(1/4)))*2^(1/4)-4/3*arctan(1/2*2^(3/4)/x*(x^3*(1
+x))^(1/4))*2^(1/4)-1/3*sum((_R^4-2)*ln((-_R*x+(x^3*(1+x))^(1/4))/x)/_R^3/(2*_R^4-1),_R=RootOf(_Z^8-_Z^4+1))

Fricas [C] (verification not implemented)

Result contains higher order function than in optimal. Order 3 vs. order 1.

Time = 0.29 (sec) , antiderivative size = 502, normalized size of antiderivative = 3.39 \[ \int \frac {(1+x) \sqrt [4]{x^3+x^4}}{x \left (-1+x^3\right )} \, dx=\frac {1}{6} \, \sqrt {2} \sqrt {-\sqrt {2 i \, \sqrt {3} + 2}} \log \left (\frac {\sqrt {2} x \sqrt {-\sqrt {2 i \, \sqrt {3} + 2}} + 2 \, {\left (x^{4} + x^{3}\right )}^{\frac {1}{4}}}{x}\right ) - \frac {1}{6} \, \sqrt {2} \sqrt {-\sqrt {2 i \, \sqrt {3} + 2}} \log \left (-\frac {\sqrt {2} x \sqrt {-\sqrt {2 i \, \sqrt {3} + 2}} - 2 \, {\left (x^{4} + x^{3}\right )}^{\frac {1}{4}}}{x}\right ) + \frac {1}{6} \, \sqrt {2} \sqrt {-\sqrt {-2 i \, \sqrt {3} + 2}} \log \left (\frac {\sqrt {2} x \sqrt {-\sqrt {-2 i \, \sqrt {3} + 2}} + 2 \, {\left (x^{4} + x^{3}\right )}^{\frac {1}{4}}}{x}\right ) - \frac {1}{6} \, \sqrt {2} \sqrt {-\sqrt {-2 i \, \sqrt {3} + 2}} \log \left (-\frac {\sqrt {2} x \sqrt {-\sqrt {-2 i \, \sqrt {3} + 2}} - 2 \, {\left (x^{4} + x^{3}\right )}^{\frac {1}{4}}}{x}\right ) + \frac {1}{6} \, \sqrt {2} {\left (2 i \, \sqrt {3} + 2\right )}^{\frac {1}{4}} \log \left (\frac {\sqrt {2} x {\left (2 i \, \sqrt {3} + 2\right )}^{\frac {1}{4}} + 2 \, {\left (x^{4} + x^{3}\right )}^{\frac {1}{4}}}{x}\right ) - \frac {1}{6} \, \sqrt {2} {\left (2 i \, \sqrt {3} + 2\right )}^{\frac {1}{4}} \log \left (-\frac {\sqrt {2} x {\left (2 i \, \sqrt {3} + 2\right )}^{\frac {1}{4}} - 2 \, {\left (x^{4} + x^{3}\right )}^{\frac {1}{4}}}{x}\right ) + \frac {1}{6} \, \sqrt {2} {\left (-2 i \, \sqrt {3} + 2\right )}^{\frac {1}{4}} \log \left (\frac {\sqrt {2} x {\left (-2 i \, \sqrt {3} + 2\right )}^{\frac {1}{4}} + 2 \, {\left (x^{4} + x^{3}\right )}^{\frac {1}{4}}}{x}\right ) - \frac {1}{6} \, \sqrt {2} {\left (-2 i \, \sqrt {3} + 2\right )}^{\frac {1}{4}} \log \left (-\frac {\sqrt {2} x {\left (-2 i \, \sqrt {3} + 2\right )}^{\frac {1}{4}} - 2 \, {\left (x^{4} + x^{3}\right )}^{\frac {1}{4}}}{x}\right ) - \frac {2}{3} \cdot 2^{\frac {1}{4}} \log \left (\frac {2^{\frac {1}{4}} x + {\left (x^{4} + x^{3}\right )}^{\frac {1}{4}}}{x}\right ) + \frac {2}{3} \cdot 2^{\frac {1}{4}} \log \left (-\frac {2^{\frac {1}{4}} x - {\left (x^{4} + x^{3}\right )}^{\frac {1}{4}}}{x}\right ) - \frac {2}{3} i \cdot 2^{\frac {1}{4}} \log \left (\frac {i \cdot 2^{\frac {1}{4}} x + {\left (x^{4} + x^{3}\right )}^{\frac {1}{4}}}{x}\right ) + \frac {2}{3} i \cdot 2^{\frac {1}{4}} \log \left (\frac {-i \cdot 2^{\frac {1}{4}} x + {\left (x^{4} + x^{3}\right )}^{\frac {1}{4}}}{x}\right ) \]

[In]

integrate((1+x)*(x^4+x^3)^(1/4)/x/(x^3-1),x, algorithm="fricas")

[Out]

1/6*sqrt(2)*sqrt(-sqrt(2*I*sqrt(3) + 2))*log((sqrt(2)*x*sqrt(-sqrt(2*I*sqrt(3) + 2)) + 2*(x^4 + x^3)^(1/4))/x)
 - 1/6*sqrt(2)*sqrt(-sqrt(2*I*sqrt(3) + 2))*log(-(sqrt(2)*x*sqrt(-sqrt(2*I*sqrt(3) + 2)) - 2*(x^4 + x^3)^(1/4)
)/x) + 1/6*sqrt(2)*sqrt(-sqrt(-2*I*sqrt(3) + 2))*log((sqrt(2)*x*sqrt(-sqrt(-2*I*sqrt(3) + 2)) + 2*(x^4 + x^3)^
(1/4))/x) - 1/6*sqrt(2)*sqrt(-sqrt(-2*I*sqrt(3) + 2))*log(-(sqrt(2)*x*sqrt(-sqrt(-2*I*sqrt(3) + 2)) - 2*(x^4 +
 x^3)^(1/4))/x) + 1/6*sqrt(2)*(2*I*sqrt(3) + 2)^(1/4)*log((sqrt(2)*x*(2*I*sqrt(3) + 2)^(1/4) + 2*(x^4 + x^3)^(
1/4))/x) - 1/6*sqrt(2)*(2*I*sqrt(3) + 2)^(1/4)*log(-(sqrt(2)*x*(2*I*sqrt(3) + 2)^(1/4) - 2*(x^4 + x^3)^(1/4))/
x) + 1/6*sqrt(2)*(-2*I*sqrt(3) + 2)^(1/4)*log((sqrt(2)*x*(-2*I*sqrt(3) + 2)^(1/4) + 2*(x^4 + x^3)^(1/4))/x) -
1/6*sqrt(2)*(-2*I*sqrt(3) + 2)^(1/4)*log(-(sqrt(2)*x*(-2*I*sqrt(3) + 2)^(1/4) - 2*(x^4 + x^3)^(1/4))/x) - 2/3*
2^(1/4)*log((2^(1/4)*x + (x^4 + x^3)^(1/4))/x) + 2/3*2^(1/4)*log(-(2^(1/4)*x - (x^4 + x^3)^(1/4))/x) - 2/3*I*2
^(1/4)*log((I*2^(1/4)*x + (x^4 + x^3)^(1/4))/x) + 2/3*I*2^(1/4)*log((-I*2^(1/4)*x + (x^4 + x^3)^(1/4))/x)

Sympy [N/A]

Not integrable

Time = 1.98 (sec) , antiderivative size = 26, normalized size of antiderivative = 0.18 \[ \int \frac {(1+x) \sqrt [4]{x^3+x^4}}{x \left (-1+x^3\right )} \, dx=\int \frac {\sqrt [4]{x^{3} \left (x + 1\right )} \left (x + 1\right )}{x \left (x - 1\right ) \left (x^{2} + x + 1\right )}\, dx \]

[In]

integrate((1+x)*(x**4+x**3)**(1/4)/x/(x**3-1),x)

[Out]

Integral((x**3*(x + 1))**(1/4)*(x + 1)/(x*(x - 1)*(x**2 + x + 1)), x)

Maxima [N/A]

Not integrable

Time = 0.31 (sec) , antiderivative size = 25, normalized size of antiderivative = 0.17 \[ \int \frac {(1+x) \sqrt [4]{x^3+x^4}}{x \left (-1+x^3\right )} \, dx=\int { \frac {{\left (x^{4} + x^{3}\right )}^{\frac {1}{4}} {\left (x + 1\right )}}{{\left (x^{3} - 1\right )} x} \,d x } \]

[In]

integrate((1+x)*(x^4+x^3)^(1/4)/x/(x^3-1),x, algorithm="maxima")

[Out]

integrate((x^4 + x^3)^(1/4)*(x + 1)/((x^3 - 1)*x), x)

Giac [C] (verification not implemented)

Result contains higher order function than in optimal. Order 3 vs. order 1.

Time = 0.38 (sec) , antiderivative size = 362, normalized size of antiderivative = 2.45 \[ \int \frac {(1+x) \sqrt [4]{x^3+x^4}}{x \left (-1+x^3\right )} \, dx=\frac {1}{6} \, {\left (\sqrt {6} + \sqrt {2}\right )} \arctan \left (\frac {\sqrt {6} - \sqrt {2} + 4 \, {\left (\frac {1}{x} + 1\right )}^{\frac {1}{4}}}{\sqrt {6} + \sqrt {2}}\right ) + \frac {1}{6} \, {\left (\sqrt {6} + \sqrt {2}\right )} \arctan \left (-\frac {\sqrt {6} - \sqrt {2} - 4 \, {\left (\frac {1}{x} + 1\right )}^{\frac {1}{4}}}{\sqrt {6} + \sqrt {2}}\right ) + \frac {1}{6} \, {\left (\sqrt {6} - \sqrt {2}\right )} \arctan \left (\frac {\sqrt {6} + \sqrt {2} + 4 \, {\left (\frac {1}{x} + 1\right )}^{\frac {1}{4}}}{\sqrt {6} - \sqrt {2}}\right ) + \frac {1}{6} \, {\left (\sqrt {6} - \sqrt {2}\right )} \arctan \left (-\frac {\sqrt {6} + \sqrt {2} - 4 \, {\left (\frac {1}{x} + 1\right )}^{\frac {1}{4}}}{\sqrt {6} - \sqrt {2}}\right ) + \frac {1}{12} \, {\left (\sqrt {6} + \sqrt {2}\right )} \log \left (\frac {1}{2} \, {\left (\sqrt {6} + \sqrt {2}\right )} {\left (\frac {1}{x} + 1\right )}^{\frac {1}{4}} + \sqrt {\frac {1}{x} + 1} + 1\right ) - \frac {1}{12} \, {\left (\sqrt {6} + \sqrt {2}\right )} \log \left (-\frac {1}{2} \, {\left (\sqrt {6} + \sqrt {2}\right )} {\left (\frac {1}{x} + 1\right )}^{\frac {1}{4}} + \sqrt {\frac {1}{x} + 1} + 1\right ) + \frac {1}{12} \, {\left (\sqrt {6} - \sqrt {2}\right )} \log \left (\frac {1}{2} \, {\left (\sqrt {6} - \sqrt {2}\right )} {\left (\frac {1}{x} + 1\right )}^{\frac {1}{4}} + \sqrt {\frac {1}{x} + 1} + 1\right ) - \frac {1}{12} \, {\left (\sqrt {6} - \sqrt {2}\right )} \log \left (-\frac {1}{2} \, {\left (\sqrt {6} - \sqrt {2}\right )} {\left (\frac {1}{x} + 1\right )}^{\frac {1}{4}} + \sqrt {\frac {1}{x} + 1} + 1\right ) - \frac {1}{3} \cdot 8^{\frac {3}{4}} \arctan \left (\frac {1}{2} \cdot 2^{\frac {3}{4}} {\left (\frac {1}{x} + 1\right )}^{\frac {1}{4}}\right ) - \frac {2}{3} \cdot 2^{\frac {1}{4}} \log \left (2^{\frac {1}{4}} + {\left (\frac {1}{x} + 1\right )}^{\frac {1}{4}}\right ) + \frac {2}{3} \cdot 2^{\frac {1}{4}} \log \left ({\left | -2^{\frac {1}{4}} + {\left (\frac {1}{x} + 1\right )}^{\frac {1}{4}} \right |}\right ) \]

[In]

integrate((1+x)*(x^4+x^3)^(1/4)/x/(x^3-1),x, algorithm="giac")

[Out]

1/6*(sqrt(6) + sqrt(2))*arctan((sqrt(6) - sqrt(2) + 4*(1/x + 1)^(1/4))/(sqrt(6) + sqrt(2))) + 1/6*(sqrt(6) + s
qrt(2))*arctan(-(sqrt(6) - sqrt(2) - 4*(1/x + 1)^(1/4))/(sqrt(6) + sqrt(2))) + 1/6*(sqrt(6) - sqrt(2))*arctan(
(sqrt(6) + sqrt(2) + 4*(1/x + 1)^(1/4))/(sqrt(6) - sqrt(2))) + 1/6*(sqrt(6) - sqrt(2))*arctan(-(sqrt(6) + sqrt
(2) - 4*(1/x + 1)^(1/4))/(sqrt(6) - sqrt(2))) + 1/12*(sqrt(6) + sqrt(2))*log(1/2*(sqrt(6) + sqrt(2))*(1/x + 1)
^(1/4) + sqrt(1/x + 1) + 1) - 1/12*(sqrt(6) + sqrt(2))*log(-1/2*(sqrt(6) + sqrt(2))*(1/x + 1)^(1/4) + sqrt(1/x
 + 1) + 1) + 1/12*(sqrt(6) - sqrt(2))*log(1/2*(sqrt(6) - sqrt(2))*(1/x + 1)^(1/4) + sqrt(1/x + 1) + 1) - 1/12*
(sqrt(6) - sqrt(2))*log(-1/2*(sqrt(6) - sqrt(2))*(1/x + 1)^(1/4) + sqrt(1/x + 1) + 1) - 1/3*8^(3/4)*arctan(1/2
*2^(3/4)*(1/x + 1)^(1/4)) - 2/3*2^(1/4)*log(2^(1/4) + (1/x + 1)^(1/4)) + 2/3*2^(1/4)*log(abs(-2^(1/4) + (1/x +
 1)^(1/4)))

Mupad [N/A]

Not integrable

Time = 6.04 (sec) , antiderivative size = 25, normalized size of antiderivative = 0.17 \[ \int \frac {(1+x) \sqrt [4]{x^3+x^4}}{x \left (-1+x^3\right )} \, dx=\int \frac {{\left (x^4+x^3\right )}^{1/4}\,\left (x+1\right )}{x\,\left (x^3-1\right )} \,d x \]

[In]

int(((x^3 + x^4)^(1/4)*(x + 1))/(x*(x^3 - 1)),x)

[Out]

int(((x^3 + x^4)^(1/4)*(x + 1))/(x*(x^3 - 1)), x)