\(\int \frac {\sqrt {-\frac {a}{b^2}+\frac {a^2 x^2}{b^2}}}{\sqrt {a x^2+b x \sqrt {-\frac {a}{b^2}+\frac {a^2 x^2}{b^2}}}} \, dx\) [2209]

   Optimal result
   Rubi [F]
   Mathematica [A] (verified)
   Maple [F]
   Fricas [A] (verification not implemented)
   Sympy [F]
   Maxima [F]
   Giac [F]
   Mupad [F(-1)]

Optimal result

Integrand size = 56, antiderivative size = 163 \[ \int \frac {\sqrt {-\frac {a}{b^2}+\frac {a^2 x^2}{b^2}}}{\sqrt {a x^2+b x \sqrt {-\frac {a}{b^2}+\frac {a^2 x^2}{b^2}}}} \, dx=\frac {\left (3-2 a x^2\right ) \sqrt {a x^2+b x \sqrt {-\frac {a}{b^2}+\frac {a^2 x^2}{b^2}}}}{4 b}+\frac {1}{2} x \sqrt {-\frac {a}{b^2}+\frac {a^2 x^2}{b^2}} \sqrt {a x^2+b x \sqrt {-\frac {a}{b^2}+\frac {a^2 x^2}{b^2}}}+\frac {5 \text {arctanh}\left (\sqrt {2} \sqrt {a x^2+b x \sqrt {-\frac {a}{b^2}+\frac {a^2 x^2}{b^2}}}\right )}{4 \sqrt {2} b} \]

[Out]

1/4*(-2*a*x^2+3)*(a*x^2+b*x*(-a/b^2+a^2*x^2/b^2)^(1/2))^(1/2)/b+1/2*x*(-a/b^2+a^2*x^2/b^2)^(1/2)*(a*x^2+b*x*(-
a/b^2+a^2*x^2/b^2)^(1/2))^(1/2)+5/8*arctanh(2^(1/2)*(a*x^2+b*x*(-a/b^2+a^2*x^2/b^2)^(1/2))^(1/2))*2^(1/2)/b

Rubi [F]

\[ \int \frac {\sqrt {-\frac {a}{b^2}+\frac {a^2 x^2}{b^2}}}{\sqrt {a x^2+b x \sqrt {-\frac {a}{b^2}+\frac {a^2 x^2}{b^2}}}} \, dx=\int \frac {\sqrt {-\frac {a}{b^2}+\frac {a^2 x^2}{b^2}}}{\sqrt {a x^2+b x \sqrt {-\frac {a}{b^2}+\frac {a^2 x^2}{b^2}}}} \, dx \]

[In]

Int[Sqrt[-(a/b^2) + (a^2*x^2)/b^2]/Sqrt[a*x^2 + b*x*Sqrt[-(a/b^2) + (a^2*x^2)/b^2]],x]

[Out]

Defer[Int][Sqrt[-(a/b^2) + (a^2*x^2)/b^2]/Sqrt[a*x^2 + b*x*Sqrt[-(a/b^2) + (a^2*x^2)/b^2]], x]

Rubi steps \begin{align*} \text {integral}& = \int \frac {\sqrt {-\frac {a}{b^2}+\frac {a^2 x^2}{b^2}}}{\sqrt {a x^2+b x \sqrt {-\frac {a}{b^2}+\frac {a^2 x^2}{b^2}}}} \, dx \\ \end{align*}

Mathematica [A] (verified)

Time = 7.53 (sec) , antiderivative size = 104, normalized size of antiderivative = 0.64 \[ \int \frac {\sqrt {-\frac {a}{b^2}+\frac {a^2 x^2}{b^2}}}{\sqrt {a x^2+b x \sqrt {-\frac {a}{b^2}+\frac {a^2 x^2}{b^2}}}} \, dx=\frac {\frac {2 x \left (a x+3 b \sqrt {\frac {a \left (-1+a x^2\right )}{b^2}}\right )}{\sqrt {x \left (a x+b \sqrt {\frac {a \left (-1+a x^2\right )}{b^2}}\right )}}+5 \sqrt {2} \text {arctanh}\left (\sqrt {2} \sqrt {x \left (a x+b \sqrt {\frac {a \left (-1+a x^2\right )}{b^2}}\right )}\right )}{8 b} \]

[In]

Integrate[Sqrt[-(a/b^2) + (a^2*x^2)/b^2]/Sqrt[a*x^2 + b*x*Sqrt[-(a/b^2) + (a^2*x^2)/b^2]],x]

[Out]

((2*x*(a*x + 3*b*Sqrt[(a*(-1 + a*x^2))/b^2]))/Sqrt[x*(a*x + b*Sqrt[(a*(-1 + a*x^2))/b^2])] + 5*Sqrt[2]*ArcTanh
[Sqrt[2]*Sqrt[x*(a*x + b*Sqrt[(a*(-1 + a*x^2))/b^2])]])/(8*b)

Maple [F]

\[\int \frac {\sqrt {-\frac {a}{b^{2}}+\frac {a^{2} x^{2}}{b^{2}}}}{\sqrt {a \,x^{2}+b x \sqrt {-\frac {a}{b^{2}}+\frac {a^{2} x^{2}}{b^{2}}}}}d x\]

[In]

int((-a/b^2+a^2*x^2/b^2)^(1/2)/(a*x^2+b*x*(-a/b^2+a^2*x^2/b^2)^(1/2))^(1/2),x)

[Out]

int((-a/b^2+a^2*x^2/b^2)^(1/2)/(a*x^2+b*x*(-a/b^2+a^2*x^2/b^2)^(1/2))^(1/2),x)

Fricas [A] (verification not implemented)

none

Time = 8.71 (sec) , antiderivative size = 168, normalized size of antiderivative = 1.03 \[ \int \frac {\sqrt {-\frac {a}{b^2}+\frac {a^2 x^2}{b^2}}}{\sqrt {a x^2+b x \sqrt {-\frac {a}{b^2}+\frac {a^2 x^2}{b^2}}}} \, dx=-\frac {4 \, {\left (2 \, a x^{2} - 2 \, b x \sqrt {\frac {a^{2} x^{2} - a}{b^{2}}} - 3\right )} \sqrt {a x^{2} + b x \sqrt {\frac {a^{2} x^{2} - a}{b^{2}}}} - 5 \, \sqrt {2} \log \left (4 \, a x^{2} - 4 \, b x \sqrt {\frac {a^{2} x^{2} - a}{b^{2}}} - 2 \, \sqrt {a x^{2} + b x \sqrt {\frac {a^{2} x^{2} - a}{b^{2}}}} {\left (2 \, \sqrt {2} b x \sqrt {\frac {a^{2} x^{2} - a}{b^{2}}} - \sqrt {2} {\left (2 \, a x^{2} - 1\right )}\right )} - 1\right )}{16 \, b} \]

[In]

integrate((-a/b^2+a^2*x^2/b^2)^(1/2)/(a*x^2+b*x*(-a/b^2+a^2*x^2/b^2)^(1/2))^(1/2),x, algorithm="fricas")

[Out]

-1/16*(4*(2*a*x^2 - 2*b*x*sqrt((a^2*x^2 - a)/b^2) - 3)*sqrt(a*x^2 + b*x*sqrt((a^2*x^2 - a)/b^2)) - 5*sqrt(2)*l
og(4*a*x^2 - 4*b*x*sqrt((a^2*x^2 - a)/b^2) - 2*sqrt(a*x^2 + b*x*sqrt((a^2*x^2 - a)/b^2))*(2*sqrt(2)*b*x*sqrt((
a^2*x^2 - a)/b^2) - sqrt(2)*(2*a*x^2 - 1)) - 1))/b

Sympy [F]

\[ \int \frac {\sqrt {-\frac {a}{b^2}+\frac {a^2 x^2}{b^2}}}{\sqrt {a x^2+b x \sqrt {-\frac {a}{b^2}+\frac {a^2 x^2}{b^2}}}} \, dx=\int \frac {\sqrt {\frac {a \left (a x^{2} - 1\right )}{b^{2}}}}{\sqrt {x \left (a x + b \sqrt {\frac {a^{2} x^{2}}{b^{2}} - \frac {a}{b^{2}}}\right )}}\, dx \]

[In]

integrate((-a/b**2+a**2*x**2/b**2)**(1/2)/(a*x**2+b*x*(-a/b**2+a**2*x**2/b**2)**(1/2))**(1/2),x)

[Out]

Integral(sqrt(a*(a*x**2 - 1)/b**2)/sqrt(x*(a*x + b*sqrt(a**2*x**2/b**2 - a/b**2))), x)

Maxima [F]

\[ \int \frac {\sqrt {-\frac {a}{b^2}+\frac {a^2 x^2}{b^2}}}{\sqrt {a x^2+b x \sqrt {-\frac {a}{b^2}+\frac {a^2 x^2}{b^2}}}} \, dx=\int { \frac {\sqrt {\frac {a^{2} x^{2}}{b^{2}} - \frac {a}{b^{2}}}}{\sqrt {a x^{2} + \sqrt {\frac {a^{2} x^{2}}{b^{2}} - \frac {a}{b^{2}}} b x}} \,d x } \]

[In]

integrate((-a/b^2+a^2*x^2/b^2)^(1/2)/(a*x^2+b*x*(-a/b^2+a^2*x^2/b^2)^(1/2))^(1/2),x, algorithm="maxima")

[Out]

integrate(sqrt(a^2*x^2/b^2 - a/b^2)/sqrt(a*x^2 + sqrt(a^2*x^2/b^2 - a/b^2)*b*x), x)

Giac [F]

\[ \int \frac {\sqrt {-\frac {a}{b^2}+\frac {a^2 x^2}{b^2}}}{\sqrt {a x^2+b x \sqrt {-\frac {a}{b^2}+\frac {a^2 x^2}{b^2}}}} \, dx=\int { \frac {\sqrt {\frac {a^{2} x^{2}}{b^{2}} - \frac {a}{b^{2}}}}{\sqrt {a x^{2} + \sqrt {\frac {a^{2} x^{2}}{b^{2}} - \frac {a}{b^{2}}} b x}} \,d x } \]

[In]

integrate((-a/b^2+a^2*x^2/b^2)^(1/2)/(a*x^2+b*x*(-a/b^2+a^2*x^2/b^2)^(1/2))^(1/2),x, algorithm="giac")

[Out]

integrate(sqrt(a^2*x^2/b^2 - a/b^2)/sqrt(a*x^2 + sqrt(a^2*x^2/b^2 - a/b^2)*b*x), x)

Mupad [F(-1)]

Timed out. \[ \int \frac {\sqrt {-\frac {a}{b^2}+\frac {a^2 x^2}{b^2}}}{\sqrt {a x^2+b x \sqrt {-\frac {a}{b^2}+\frac {a^2 x^2}{b^2}}}} \, dx=\int \frac {\sqrt {\frac {a^2\,x^2}{b^2}-\frac {a}{b^2}}}{\sqrt {a\,x^2+b\,x\,\sqrt {\frac {a^2\,x^2}{b^2}-\frac {a}{b^2}}}} \,d x \]

[In]

int(((a^2*x^2)/b^2 - a/b^2)^(1/2)/(a*x^2 + b*x*((a^2*x^2)/b^2 - a/b^2)^(1/2))^(1/2),x)

[Out]

int(((a^2*x^2)/b^2 - a/b^2)^(1/2)/(a*x^2 + b*x*((a^2*x^2)/b^2 - a/b^2)^(1/2))^(1/2), x)