\(\int \frac {1}{(1+x) \sqrt [3]{1-x^3}} \, dx\) [2269]

   Optimal result
   Rubi [A] (verified)
   Mathematica [A] (verified)
   Maple [C] (warning: unable to verify)
   Fricas [B] (verification not implemented)
   Sympy [F]
   Maxima [F]
   Giac [F]
   Mupad [F(-1)]

Optimal result

Integrand size = 17, antiderivative size = 172 \[ \int \frac {1}{(1+x) \sqrt [3]{1-x^3}} \, dx=\frac {\sqrt {3} \arctan \left (\frac {\sqrt {3} \sqrt [3]{1-x^3}}{\sqrt [3]{2}-\sqrt [3]{2} x+\sqrt [3]{1-x^3}}\right )}{2 \sqrt [3]{2}}+\frac {\log \left (-\sqrt [3]{2}+\sqrt [3]{2} x+2 \sqrt [3]{1-x^3}\right )}{2 \sqrt [3]{2}}-\frac {\log \left (2^{2/3}-2\ 2^{2/3} x+2^{2/3} x^2+\left (2 \sqrt [3]{2}-2 \sqrt [3]{2} x\right ) \sqrt [3]{1-x^3}+4 \left (1-x^3\right )^{2/3}\right )}{4 \sqrt [3]{2}} \]

[Out]

1/4*3^(1/2)*arctan(3^(1/2)*(-x^3+1)^(1/3)/(2^(1/3)-2^(1/3)*x+(-x^3+1)^(1/3)))*2^(2/3)+1/4*ln(-2^(1/3)+2^(1/3)*
x+2*(-x^3+1)^(1/3))*2^(2/3)-1/8*ln(2^(2/3)-2*2^(2/3)*x+2^(2/3)*x^2+(2*2^(1/3)-2*2^(1/3)*x)*(-x^3+1)^(1/3)+4*(-
x^3+1)^(2/3))*2^(2/3)

Rubi [A] (verified)

Time = 0.03 (sec) , antiderivative size = 97, normalized size of antiderivative = 0.56, number of steps used = 1, number of rules used = 1, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.059, Rules used = {2174} \[ \int \frac {1}{(1+x) \sqrt [3]{1-x^3}} \, dx=-\frac {\sqrt {3} \arctan \left (\frac {\frac {\sqrt [3]{2} (1-x)}{\sqrt [3]{1-x^3}}+1}{\sqrt {3}}\right )}{2 \sqrt [3]{2}}+\frac {3 \log \left (2^{2/3} \sqrt [3]{1-x^3}+x-1\right )}{4 \sqrt [3]{2}}-\frac {\log \left ((1-x) (x+1)^2\right )}{4 \sqrt [3]{2}} \]

[In]

Int[1/((1 + x)*(1 - x^3)^(1/3)),x]

[Out]

-1/2*(Sqrt[3]*ArcTan[(1 + (2^(1/3)*(1 - x))/(1 - x^3)^(1/3))/Sqrt[3]])/2^(1/3) - Log[(1 - x)*(1 + x)^2]/(4*2^(
1/3)) + (3*Log[-1 + x + 2^(2/3)*(1 - x^3)^(1/3)])/(4*2^(1/3))

Rule 2174

Int[1/(((c_) + (d_.)*(x_))*((a_) + (b_.)*(x_)^3)^(1/3)), x_Symbol] :> Simp[Sqrt[3]*(ArcTan[(1 - 2^(1/3)*Rt[b,
3]*((c - d*x)/(d*(a + b*x^3)^(1/3))))/Sqrt[3]]/(2^(4/3)*Rt[b, 3]*c)), x] + (Simp[Log[(c + d*x)^2*(c - d*x)]/(2
^(7/3)*Rt[b, 3]*c), x] - Simp[(3*Log[Rt[b, 3]*(c - d*x) + 2^(2/3)*d*(a + b*x^3)^(1/3)])/(2^(7/3)*Rt[b, 3]*c),
x]) /; FreeQ[{a, b, c, d}, x] && EqQ[b*c^3 + a*d^3, 0]

Rubi steps \begin{align*} \text {integral}& = -\frac {\sqrt {3} \arctan \left (\frac {1+\frac {\sqrt [3]{2} (1-x)}{\sqrt [3]{1-x^3}}}{\sqrt {3}}\right )}{2 \sqrt [3]{2}}-\frac {\log \left ((1-x) (1+x)^2\right )}{4 \sqrt [3]{2}}+\frac {3 \log \left (-1+x+2^{2/3} \sqrt [3]{1-x^3}\right )}{4 \sqrt [3]{2}} \\ \end{align*}

Mathematica [A] (verified)

Time = 1.03 (sec) , antiderivative size = 148, normalized size of antiderivative = 0.86 \[ \int \frac {1}{(1+x) \sqrt [3]{1-x^3}} \, dx=\frac {2 \sqrt {3} \arctan \left (\frac {\sqrt {3} \sqrt [3]{1-x^3}}{\sqrt [3]{2}-\sqrt [3]{2} x+\sqrt [3]{1-x^3}}\right )+2 \log \left (-\sqrt [3]{2}+\sqrt [3]{2} x+2 \sqrt [3]{1-x^3}\right )-\log \left (2^{2/3}-2\ 2^{2/3} x+2^{2/3} x^2-2 (-1+x) \sqrt [3]{2-2 x^3}+4 \left (1-x^3\right )^{2/3}\right )}{4 \sqrt [3]{2}} \]

[In]

Integrate[1/((1 + x)*(1 - x^3)^(1/3)),x]

[Out]

(2*Sqrt[3]*ArcTan[(Sqrt[3]*(1 - x^3)^(1/3))/(2^(1/3) - 2^(1/3)*x + (1 - x^3)^(1/3))] + 2*Log[-2^(1/3) + 2^(1/3
)*x + 2*(1 - x^3)^(1/3)] - Log[2^(2/3) - 2*2^(2/3)*x + 2^(2/3)*x^2 - 2*(-1 + x)*(2 - 2*x^3)^(1/3) + 4*(1 - x^3
)^(2/3)])/(4*2^(1/3))

Maple [C] (warning: unable to verify)

Result contains higher order function than in optimal. Order 9 vs. order 3.

Time = 6.83 (sec) , antiderivative size = 1142, normalized size of antiderivative = 6.64

method result size
trager \(\text {Expression too large to display}\) \(1142\)

[In]

int(1/(1+x)/(-x^3+1)^(1/3),x,method=_RETURNVERBOSE)

[Out]

-1/4*ln((6*RootOf(RootOf(_Z^3-4)^2+2*_Z*RootOf(_Z^3-4)+4*_Z^2)*RootOf(_Z^3-4)^3*x+20*RootOf(RootOf(_Z^3-4)^2+2
*_Z*RootOf(_Z^3-4)+4*_Z^2)^2*RootOf(_Z^3-4)^2*x+8*(-x^3+1)^(2/3)*RootOf(RootOf(_Z^3-4)^2+2*_Z*RootOf(_Z^3-4)+4
*_Z^2)*RootOf(_Z^3-4)^2-13*(-x^3+1)^(1/3)*RootOf(_Z^3-4)^2*x-18*(-x^3+1)^(1/3)*RootOf(_Z^3-4)*RootOf(RootOf(_Z
^3-4)^2+2*_Z*RootOf(_Z^3-4)+4*_Z^2)*x+13*(-x^3+1)^(1/3)*RootOf(_Z^3-4)^2+18*(-x^3+1)^(1/3)*RootOf(_Z^3-4)*Root
Of(RootOf(_Z^3-4)^2+2*_Z*RootOf(_Z^3-4)+4*_Z^2)-21*RootOf(_Z^3-4)*x^2-70*RootOf(RootOf(_Z^3-4)^2+2*_Z*RootOf(_
Z^3-4)+4*_Z^2)*x^2-6*RootOf(_Z^3-4)*x-20*RootOf(RootOf(_Z^3-4)^2+2*_Z*RootOf(_Z^3-4)+4*_Z^2)*x-36*(-x^3+1)^(2/
3)-21*RootOf(_Z^3-4)-70*RootOf(RootOf(_Z^3-4)^2+2*_Z*RootOf(_Z^3-4)+4*_Z^2))/(1+x)^2)*RootOf(_Z^3-4)-1/2*ln((6
*RootOf(RootOf(_Z^3-4)^2+2*_Z*RootOf(_Z^3-4)+4*_Z^2)*RootOf(_Z^3-4)^3*x+20*RootOf(RootOf(_Z^3-4)^2+2*_Z*RootOf
(_Z^3-4)+4*_Z^2)^2*RootOf(_Z^3-4)^2*x+8*(-x^3+1)^(2/3)*RootOf(RootOf(_Z^3-4)^2+2*_Z*RootOf(_Z^3-4)+4*_Z^2)*Roo
tOf(_Z^3-4)^2-13*(-x^3+1)^(1/3)*RootOf(_Z^3-4)^2*x-18*(-x^3+1)^(1/3)*RootOf(_Z^3-4)*RootOf(RootOf(_Z^3-4)^2+2*
_Z*RootOf(_Z^3-4)+4*_Z^2)*x+13*(-x^3+1)^(1/3)*RootOf(_Z^3-4)^2+18*(-x^3+1)^(1/3)*RootOf(_Z^3-4)*RootOf(RootOf(
_Z^3-4)^2+2*_Z*RootOf(_Z^3-4)+4*_Z^2)-21*RootOf(_Z^3-4)*x^2-70*RootOf(RootOf(_Z^3-4)^2+2*_Z*RootOf(_Z^3-4)+4*_
Z^2)*x^2-6*RootOf(_Z^3-4)*x-20*RootOf(RootOf(_Z^3-4)^2+2*_Z*RootOf(_Z^3-4)+4*_Z^2)*x-36*(-x^3+1)^(2/3)-21*Root
Of(_Z^3-4)-70*RootOf(RootOf(_Z^3-4)^2+2*_Z*RootOf(_Z^3-4)+4*_Z^2))/(1+x)^2)*RootOf(RootOf(_Z^3-4)^2+2*_Z*RootO
f(_Z^3-4)+4*_Z^2)+1/4*RootOf(_Z^3-4)*ln((6*RootOf(RootOf(_Z^3-4)^2+2*_Z*RootOf(_Z^3-4)+4*_Z^2)*RootOf(_Z^3-4)^
3*x-8*RootOf(RootOf(_Z^3-4)^2+2*_Z*RootOf(_Z^3-4)+4*_Z^2)^2*RootOf(_Z^3-4)^2*x-8*(-x^3+1)^(2/3)*RootOf(RootOf(
_Z^3-4)^2+2*_Z*RootOf(_Z^3-4)+4*_Z^2)*RootOf(_Z^3-4)^2-9*(-x^3+1)^(1/3)*RootOf(_Z^3-4)^2*x-26*(-x^3+1)^(1/3)*R
ootOf(_Z^3-4)*RootOf(RootOf(_Z^3-4)^2+2*_Z*RootOf(_Z^3-4)+4*_Z^2)*x+9*(-x^3+1)^(1/3)*RootOf(_Z^3-4)^2+26*(-x^3
+1)^(1/3)*RootOf(_Z^3-4)*RootOf(RootOf(_Z^3-4)^2+2*_Z*RootOf(_Z^3-4)+4*_Z^2)+21*RootOf(_Z^3-4)*x^2-28*RootOf(R
ootOf(_Z^3-4)^2+2*_Z*RootOf(_Z^3-4)+4*_Z^2)*x^2+18*RootOf(_Z^3-4)*x-24*RootOf(RootOf(_Z^3-4)^2+2*_Z*RootOf(_Z^
3-4)+4*_Z^2)*x-52*(-x^3+1)^(2/3)+21*RootOf(_Z^3-4)-28*RootOf(RootOf(_Z^3-4)^2+2*_Z*RootOf(_Z^3-4)+4*_Z^2))/(1+
x)^2)

Fricas [B] (verification not implemented)

Leaf count of result is larger than twice the leaf count of optimal. 301 vs. \(2 (132) = 264\).

Time = 1.94 (sec) , antiderivative size = 301, normalized size of antiderivative = 1.75 \[ \int \frac {1}{(1+x) \sqrt [3]{1-x^3}} \, dx=\frac {1}{12} \, \sqrt {3} 2^{\frac {2}{3}} \arctan \left (\frac {\sqrt {3} 2^{\frac {1}{6}} {\left (2^{\frac {5}{6}} {\left (13 \, x^{6} + 2 \, x^{5} + 19 \, x^{4} - 4 \, x^{3} + 19 \, x^{2} + 2 \, x + 13\right )} - 4 \, \sqrt {2} {\left (5 \, x^{5} - 5 \, x^{4} + 6 \, x^{3} - 6 \, x^{2} + 5 \, x - 5\right )} {\left (-x^{3} + 1\right )}^{\frac {1}{3}} + 16 \cdot 2^{\frac {1}{6}} {\left (x^{4} + 2 \, x^{3} + 2 \, x^{2} + 2 \, x + 1\right )} {\left (-x^{3} + 1\right )}^{\frac {2}{3}}\right )}}{6 \, {\left (3 \, x^{6} - 18 \, x^{5} - 3 \, x^{4} - 28 \, x^{3} - 3 \, x^{2} - 18 \, x + 3\right )}}\right ) - \frac {1}{24} \cdot 2^{\frac {2}{3}} \log \left (\frac {4 \cdot 2^{\frac {2}{3}} {\left (-x^{3} + 1\right )}^{\frac {2}{3}} {\left (x^{2} + 1\right )} + 2^{\frac {1}{3}} {\left (5 \, x^{4} + 6 \, x^{2} + 5\right )} - 2 \, {\left (3 \, x^{3} - x^{2} + x - 3\right )} {\left (-x^{3} + 1\right )}^{\frac {1}{3}}}{x^{4} + 4 \, x^{3} + 6 \, x^{2} + 4 \, x + 1}\right ) + \frac {1}{12} \cdot 2^{\frac {2}{3}} \log \left (\frac {2^{\frac {2}{3}} {\left (x^{2} + 2 \, x + 1\right )} - 2 \cdot 2^{\frac {1}{3}} {\left (-x^{3} + 1\right )}^{\frac {1}{3}} {\left (x - 1\right )} - 4 \, {\left (-x^{3} + 1\right )}^{\frac {2}{3}}}{x^{2} + 2 \, x + 1}\right ) \]

[In]

integrate(1/(1+x)/(-x^3+1)^(1/3),x, algorithm="fricas")

[Out]

1/12*sqrt(3)*2^(2/3)*arctan(1/6*sqrt(3)*2^(1/6)*(2^(5/6)*(13*x^6 + 2*x^5 + 19*x^4 - 4*x^3 + 19*x^2 + 2*x + 13)
 - 4*sqrt(2)*(5*x^5 - 5*x^4 + 6*x^3 - 6*x^2 + 5*x - 5)*(-x^3 + 1)^(1/3) + 16*2^(1/6)*(x^4 + 2*x^3 + 2*x^2 + 2*
x + 1)*(-x^3 + 1)^(2/3))/(3*x^6 - 18*x^5 - 3*x^4 - 28*x^3 - 3*x^2 - 18*x + 3)) - 1/24*2^(2/3)*log((4*2^(2/3)*(
-x^3 + 1)^(2/3)*(x^2 + 1) + 2^(1/3)*(5*x^4 + 6*x^2 + 5) - 2*(3*x^3 - x^2 + x - 3)*(-x^3 + 1)^(1/3))/(x^4 + 4*x
^3 + 6*x^2 + 4*x + 1)) + 1/12*2^(2/3)*log((2^(2/3)*(x^2 + 2*x + 1) - 2*2^(1/3)*(-x^3 + 1)^(1/3)*(x - 1) - 4*(-
x^3 + 1)^(2/3))/(x^2 + 2*x + 1))

Sympy [F]

\[ \int \frac {1}{(1+x) \sqrt [3]{1-x^3}} \, dx=\int \frac {1}{\sqrt [3]{- \left (x - 1\right ) \left (x^{2} + x + 1\right )} \left (x + 1\right )}\, dx \]

[In]

integrate(1/(1+x)/(-x**3+1)**(1/3),x)

[Out]

Integral(1/((-(x - 1)*(x**2 + x + 1))**(1/3)*(x + 1)), x)

Maxima [F]

\[ \int \frac {1}{(1+x) \sqrt [3]{1-x^3}} \, dx=\int { \frac {1}{{\left (-x^{3} + 1\right )}^{\frac {1}{3}} {\left (x + 1\right )}} \,d x } \]

[In]

integrate(1/(1+x)/(-x^3+1)^(1/3),x, algorithm="maxima")

[Out]

integrate(1/((-x^3 + 1)^(1/3)*(x + 1)), x)

Giac [F]

\[ \int \frac {1}{(1+x) \sqrt [3]{1-x^3}} \, dx=\int { \frac {1}{{\left (-x^{3} + 1\right )}^{\frac {1}{3}} {\left (x + 1\right )}} \,d x } \]

[In]

integrate(1/(1+x)/(-x^3+1)^(1/3),x, algorithm="giac")

[Out]

integrate(1/((-x^3 + 1)^(1/3)*(x + 1)), x)

Mupad [F(-1)]

Timed out. \[ \int \frac {1}{(1+x) \sqrt [3]{1-x^3}} \, dx=\int \frac {1}{{\left (1-x^3\right )}^{1/3}\,\left (x+1\right )} \,d x \]

[In]

int(1/((1 - x^3)^(1/3)*(x + 1)),x)

[Out]

int(1/((1 - x^3)^(1/3)*(x + 1)), x)