\(\int \frac {a+b x^2+a k^4 x^4}{\sqrt {(1-x) x (1-k^2 x)} (-1+k^4 x^4)} \, dx\) [2314]

   Optimal result
   Rubi [C] (verified)
   Mathematica [A] (verified)
   Maple [A] (verified)
   Fricas [B] (verification not implemented)
   Sympy [F]
   Maxima [F]
   Giac [F]
   Mupad [F(-1)]

Optimal result

Integrand size = 46, antiderivative size = 178 \[ \int \frac {a+b x^2+a k^4 x^4}{\sqrt {(1-x) x \left (1-k^2 x\right )} \left (-1+k^4 x^4\right )} \, dx=\frac {\left (-b-2 a k^2\right ) \arctan \left (\frac {(-1+k) x}{\sqrt {x+\left (-1-k^2\right ) x^2+k^2 x^3}}\right )}{4 (-1+k) k^2}+\frac {\left (-b-2 a k^2\right ) \arctan \left (\frac {(1+k) x}{\sqrt {x+\left (-1-k^2\right ) x^2+k^2 x^3}}\right )}{4 k^2 (1+k)}+\frac {\left (b-2 a k^2\right ) \arctan \left (\frac {\sqrt {1+k^2} \sqrt {x+\left (-1-k^2\right ) x^2+k^2 x^3}}{(-1+x) \left (-1+k^2 x\right )}\right )}{2 k^2 \sqrt {1+k^2}} \]

[Out]

1/4*(-2*a*k^2-b)*arctan((-1+k)*x/(x+(-k^2-1)*x^2+k^2*x^3)^(1/2))/(-1+k)/k^2+1/4*(-2*a*k^2-b)*arctan((1+k)*x/(x
+(-k^2-1)*x^2+k^2*x^3)^(1/2))/k^2/(1+k)+1/2*(-2*a*k^2+b)*arctan((k^2+1)^(1/2)*(x+(-k^2-1)*x^2+k^2*x^3)^(1/2)/(
-1+x)/(k^2*x-1))/k^2/(k^2+1)^(1/2)

Rubi [C] (verified)

Result contains higher order function than in optimal. Order 4 vs. order 3 in optimal.

Time = 4.82 (sec) , antiderivative size = 495, normalized size of antiderivative = 2.78, number of steps used = 28, number of rules used = 8, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.174, Rules used = {6850, 6857, 116, 6820, 948, 12, 174, 551} \[ \int \frac {a+b x^2+a k^4 x^4}{\sqrt {(1-x) x \left (1-k^2 x\right )} \left (-1+k^4 x^4\right )} \, dx=-\frac {(1-x) \sqrt {-x} \sqrt {x} \sqrt {1-k^2 x} \left (2 a k^2+b\right ) \operatorname {EllipticPi}\left (-\frac {1}{k},\arcsin \left (\sqrt {-k^2} \sqrt {-x}\right ),\frac {1}{k^2}\right )}{2 \left (-k^2\right )^{3/2} \sqrt {x-x^2} \sqrt {(1-x) x \left (1-k^2 x\right )}}-\frac {(1-x) \sqrt {-x} \sqrt {x} \sqrt {1-k^2 x} \left (2 a k^2+b\right ) \operatorname {EllipticPi}\left (\frac {1}{k},\arcsin \left (\sqrt {-k^2} \sqrt {-x}\right ),\frac {1}{k^2}\right )}{2 \left (-k^2\right )^{3/2} \sqrt {x-x^2} \sqrt {(1-x) x \left (1-k^2 x\right )}}+\frac {(1-x) \sqrt {-x} \sqrt {x} \sqrt {1-k^2 x} \left (b-2 a k^2\right ) \operatorname {EllipticPi}\left (-\frac {1}{\sqrt {-k^2}},\arcsin \left (\sqrt {-k^2} \sqrt {-x}\right ),\frac {1}{k^2}\right )}{2 \left (-k^2\right )^{3/2} \sqrt {x-x^2} \sqrt {(1-x) x \left (1-k^2 x\right )}}+\frac {(1-x) \sqrt {-x} \sqrt {x} \sqrt {1-k^2 x} \left (b-2 a k^2\right ) \operatorname {EllipticPi}\left (\frac {1}{\sqrt {-k^2}},\arcsin \left (\sqrt {-k^2} \sqrt {-x}\right ),\frac {1}{k^2}\right )}{2 \left (-k^2\right )^{3/2} \sqrt {x-x^2} \sqrt {(1-x) x \left (1-k^2 x\right )}}+\frac {2 a \sqrt {1-x} \sqrt {x} \sqrt {1-k^2 x} \operatorname {EllipticF}\left (\arcsin \left (\sqrt {x}\right ),k^2\right )}{\sqrt {(1-x) x \left (1-k^2 x\right )}} \]

[In]

Int[(a + b*x^2 + a*k^4*x^4)/(Sqrt[(1 - x)*x*(1 - k^2*x)]*(-1 + k^4*x^4)),x]

[Out]

(2*a*Sqrt[1 - x]*Sqrt[x]*Sqrt[1 - k^2*x]*EllipticF[ArcSin[Sqrt[x]], k^2])/Sqrt[(1 - x)*x*(1 - k^2*x)] - ((b +
2*a*k^2)*(1 - x)*Sqrt[-x]*Sqrt[x]*Sqrt[1 - k^2*x]*EllipticPi[-k^(-1), ArcSin[Sqrt[-k^2]*Sqrt[-x]], k^(-2)])/(2
*(-k^2)^(3/2)*Sqrt[(1 - x)*x*(1 - k^2*x)]*Sqrt[x - x^2]) - ((b + 2*a*k^2)*(1 - x)*Sqrt[-x]*Sqrt[x]*Sqrt[1 - k^
2*x]*EllipticPi[k^(-1), ArcSin[Sqrt[-k^2]*Sqrt[-x]], k^(-2)])/(2*(-k^2)^(3/2)*Sqrt[(1 - x)*x*(1 - k^2*x)]*Sqrt
[x - x^2]) + ((b - 2*a*k^2)*(1 - x)*Sqrt[-x]*Sqrt[x]*Sqrt[1 - k^2*x]*EllipticPi[-(1/Sqrt[-k^2]), ArcSin[Sqrt[-
k^2]*Sqrt[-x]], k^(-2)])/(2*(-k^2)^(3/2)*Sqrt[(1 - x)*x*(1 - k^2*x)]*Sqrt[x - x^2]) + ((b - 2*a*k^2)*(1 - x)*S
qrt[-x]*Sqrt[x]*Sqrt[1 - k^2*x]*EllipticPi[1/Sqrt[-k^2], ArcSin[Sqrt[-k^2]*Sqrt[-x]], k^(-2)])/(2*(-k^2)^(3/2)
*Sqrt[(1 - x)*x*(1 - k^2*x)]*Sqrt[x - x^2])

Rule 12

Int[(a_)*(u_), x_Symbol] :> Dist[a, Int[u, x], x] /; FreeQ[a, x] &&  !MatchQ[u, (b_)*(v_) /; FreeQ[b, x]]

Rule 116

Int[1/(Sqrt[(b_.)*(x_)]*Sqrt[(c_) + (d_.)*(x_)]*Sqrt[(e_) + (f_.)*(x_)]), x_Symbol] :> Simp[(2/(b*Sqrt[e]))*Rt
[-b/d, 2]*EllipticF[ArcSin[Sqrt[b*x]/(Sqrt[c]*Rt[-b/d, 2])], c*(f/(d*e))], x] /; FreeQ[{b, c, d, e, f}, x] &&
GtQ[c, 0] && GtQ[e, 0] && (GtQ[-b/d, 0] || LtQ[-b/f, 0])

Rule 174

Int[1/(((a_.) + (b_.)*(x_))*Sqrt[(c_.) + (d_.)*(x_)]*Sqrt[(e_.) + (f_.)*(x_)]*Sqrt[(g_.) + (h_.)*(x_)]), x_Sym
bol] :> Dist[-2, Subst[Int[1/(Simp[b*c - a*d - b*x^2, x]*Sqrt[Simp[(d*e - c*f)/d + f*(x^2/d), x]]*Sqrt[Simp[(d
*g - c*h)/d + h*(x^2/d), x]]), x], x, Sqrt[c + d*x]], x] /; FreeQ[{a, b, c, d, e, f, g, h}, x] && GtQ[(d*e - c
*f)/d, 0]

Rule 551

Int[1/(((a_) + (b_.)*(x_)^2)*Sqrt[(c_) + (d_.)*(x_)^2]*Sqrt[(e_) + (f_.)*(x_)^2]), x_Symbol] :> Simp[(1/(a*Sqr
t[c]*Sqrt[e]*Rt[-d/c, 2]))*EllipticPi[b*(c/(a*d)), ArcSin[Rt[-d/c, 2]*x], c*(f/(d*e))], x] /; FreeQ[{a, b, c,
d, e, f}, x] &&  !GtQ[d/c, 0] && GtQ[c, 0] && GtQ[e, 0] &&  !( !GtQ[f/e, 0] && SimplerSqrtQ[-f/e, -d/c])

Rule 948

Int[1/(((d_.) + (e_.)*(x_))*Sqrt[(f_.) + (g_.)*(x_)]*Sqrt[(a_.) + (b_.)*(x_) + (c_.)*(x_)^2]), x_Symbol] :> Wi
th[{q = Rt[b^2 - 4*a*c, 2]}, Dist[Sqrt[b - q + 2*c*x]*(Sqrt[b + q + 2*c*x]/Sqrt[a + b*x + c*x^2]), Int[1/((d +
 e*x)*Sqrt[f + g*x]*Sqrt[b - q + 2*c*x]*Sqrt[b + q + 2*c*x]), x], x]] /; FreeQ[{a, b, c, d, e, f, g}, x] && Ne
Q[e*f - d*g, 0] && NeQ[b^2 - 4*a*c, 0] && NeQ[c*d^2 - b*d*e + a*e^2, 0]

Rule 6820

Int[u_, x_Symbol] :> With[{v = SimplifyIntegrand[u, x]}, Int[v, x] /; SimplerIntegrandQ[v, u, x]]

Rule 6850

Int[(u_.)*((a_.)*(v_)^(m_.)*(w_)^(n_.)*(z_)^(q_.))^(p_), x_Symbol] :> Dist[a^IntPart[p]*((a*v^m*w^n*z^q)^FracP
art[p]/(v^(m*FracPart[p])*w^(n*FracPart[p])*z^(q*FracPart[p]))), Int[u*v^(m*p)*w^(n*p)*z^(p*q), x], x] /; Free
Q[{a, m, n, p, q}, x] &&  !IntegerQ[p] &&  !FreeQ[v, x] &&  !FreeQ[w, x] &&  !FreeQ[z, x]

Rule 6857

Int[(u_)/((a_) + (b_.)*(x_)^(n_)), x_Symbol] :> With[{v = RationalFunctionExpand[u/(a + b*x^n), x]}, Int[v, x]
 /; SumQ[v]] /; FreeQ[{a, b}, x] && IGtQ[n, 0]

Rubi steps \begin{align*} \text {integral}& = \frac {\left (\sqrt {1-x} \sqrt {x} \sqrt {1-k^2 x}\right ) \int \frac {a+b x^2+a k^4 x^4}{\sqrt {1-x} \sqrt {x} \sqrt {1-k^2 x} \left (-1+k^4 x^4\right )} \, dx}{\sqrt {(1-x) x \left (1-k^2 x\right )}} \\ & = \frac {\left (\sqrt {1-x} \sqrt {x} \sqrt {1-k^2 x}\right ) \int \left (\frac {a}{\sqrt {1-x} \sqrt {x} \sqrt {1-k^2 x}}+\frac {2 a+b x^2}{\sqrt {1-x} \sqrt {x} \sqrt {1-k^2 x} \left (-1+k^4 x^4\right )}\right ) \, dx}{\sqrt {(1-x) x \left (1-k^2 x\right )}} \\ & = \frac {\left (\sqrt {1-x} \sqrt {x} \sqrt {1-k^2 x}\right ) \int \frac {2 a+b x^2}{\sqrt {1-x} \sqrt {x} \sqrt {1-k^2 x} \left (-1+k^4 x^4\right )} \, dx}{\sqrt {(1-x) x \left (1-k^2 x\right )}}+\frac {\left (a \sqrt {1-x} \sqrt {x} \sqrt {1-k^2 x}\right ) \int \frac {1}{\sqrt {1-x} \sqrt {x} \sqrt {1-k^2 x}} \, dx}{\sqrt {(1-x) x \left (1-k^2 x\right )}} \\ & = \frac {2 a \sqrt {1-x} \sqrt {x} \sqrt {1-k^2 x} \operatorname {EllipticF}\left (\arcsin \left (\sqrt {x}\right ),k^2\right )}{\sqrt {(1-x) x \left (1-k^2 x\right )}}+\frac {\left (\sqrt {1-x} \sqrt {x} \sqrt {1-k^2 x}\right ) \int \left (-\frac {b+2 a k^2}{2 k^2 \sqrt {1-x} \sqrt {x} \sqrt {1-k^2 x} \left (1-k^2 x^2\right )}+\frac {b-2 a k^2}{2 k^2 \sqrt {1-x} \sqrt {x} \sqrt {1-k^2 x} \left (1+k^2 x^2\right )}\right ) \, dx}{\sqrt {(1-x) x \left (1-k^2 x\right )}} \\ & = \frac {2 a \sqrt {1-x} \sqrt {x} \sqrt {1-k^2 x} \operatorname {EllipticF}\left (\arcsin \left (\sqrt {x}\right ),k^2\right )}{\sqrt {(1-x) x \left (1-k^2 x\right )}}+\frac {\left (\left (b-2 a k^2\right ) \sqrt {1-x} \sqrt {x} \sqrt {1-k^2 x}\right ) \int \frac {1}{\sqrt {1-x} \sqrt {x} \sqrt {1-k^2 x} \left (1+k^2 x^2\right )} \, dx}{2 k^2 \sqrt {(1-x) x \left (1-k^2 x\right )}}-\frac {\left (\left (b+2 a k^2\right ) \sqrt {1-x} \sqrt {x} \sqrt {1-k^2 x}\right ) \int \frac {1}{\sqrt {1-x} \sqrt {x} \sqrt {1-k^2 x} \left (1-k^2 x^2\right )} \, dx}{2 k^2 \sqrt {(1-x) x \left (1-k^2 x\right )}} \\ & = \frac {2 a \sqrt {1-x} \sqrt {x} \sqrt {1-k^2 x} \operatorname {EllipticF}\left (\arcsin \left (\sqrt {x}\right ),k^2\right )}{\sqrt {(1-x) x \left (1-k^2 x\right )}}+\frac {\left (\left (b-2 a k^2\right ) \sqrt {1-x} \sqrt {x} \sqrt {1-k^2 x}\right ) \int \frac {1}{\sqrt {1-k^2 x} \sqrt {x-x^2} \left (1+k^2 x^2\right )} \, dx}{2 k^2 \sqrt {(1-x) x \left (1-k^2 x\right )}}-\frac {\left (\left (b+2 a k^2\right ) \sqrt {1-x} \sqrt {x} \sqrt {1-k^2 x}\right ) \int \frac {1}{\sqrt {1-k^2 x} \sqrt {x-x^2} \left (1-k^2 x^2\right )} \, dx}{2 k^2 \sqrt {(1-x) x \left (1-k^2 x\right )}} \\ & = \frac {2 a \sqrt {1-x} \sqrt {x} \sqrt {1-k^2 x} \operatorname {EllipticF}\left (\arcsin \left (\sqrt {x}\right ),k^2\right )}{\sqrt {(1-x) x \left (1-k^2 x\right )}}+\frac {\left (\left (b-2 a k^2\right ) \sqrt {1-x} \sqrt {x} \sqrt {1-k^2 x}\right ) \int \left (\frac {1}{2 \sqrt {1-k^2 x} \left (1-\sqrt {-k^2} x\right ) \sqrt {x-x^2}}+\frac {1}{2 \sqrt {1-k^2 x} \left (1+\sqrt {-k^2} x\right ) \sqrt {x-x^2}}\right ) \, dx}{2 k^2 \sqrt {(1-x) x \left (1-k^2 x\right )}}-\frac {\left (\left (b+2 a k^2\right ) \sqrt {1-x} \sqrt {x} \sqrt {1-k^2 x}\right ) \int \left (\frac {1}{2 (1-k x) \sqrt {1-k^2 x} \sqrt {x-x^2}}+\frac {1}{2 (1+k x) \sqrt {1-k^2 x} \sqrt {x-x^2}}\right ) \, dx}{2 k^2 \sqrt {(1-x) x \left (1-k^2 x\right )}} \\ & = \frac {2 a \sqrt {1-x} \sqrt {x} \sqrt {1-k^2 x} \operatorname {EllipticF}\left (\arcsin \left (\sqrt {x}\right ),k^2\right )}{\sqrt {(1-x) x \left (1-k^2 x\right )}}+\frac {\left (\left (b-2 a k^2\right ) \sqrt {1-x} \sqrt {x} \sqrt {1-k^2 x}\right ) \int \frac {1}{\sqrt {1-k^2 x} \left (1-\sqrt {-k^2} x\right ) \sqrt {x-x^2}} \, dx}{4 k^2 \sqrt {(1-x) x \left (1-k^2 x\right )}}+\frac {\left (\left (b-2 a k^2\right ) \sqrt {1-x} \sqrt {x} \sqrt {1-k^2 x}\right ) \int \frac {1}{\sqrt {1-k^2 x} \left (1+\sqrt {-k^2} x\right ) \sqrt {x-x^2}} \, dx}{4 k^2 \sqrt {(1-x) x \left (1-k^2 x\right )}}-\frac {\left (\left (b+2 a k^2\right ) \sqrt {1-x} \sqrt {x} \sqrt {1-k^2 x}\right ) \int \frac {1}{(1-k x) \sqrt {1-k^2 x} \sqrt {x-x^2}} \, dx}{4 k^2 \sqrt {(1-x) x \left (1-k^2 x\right )}}-\frac {\left (\left (b+2 a k^2\right ) \sqrt {1-x} \sqrt {x} \sqrt {1-k^2 x}\right ) \int \frac {1}{(1+k x) \sqrt {1-k^2 x} \sqrt {x-x^2}} \, dx}{4 k^2 \sqrt {(1-x) x \left (1-k^2 x\right )}} \\ & = \frac {2 a \sqrt {1-x} \sqrt {x} \sqrt {1-k^2 x} \operatorname {EllipticF}\left (\arcsin \left (\sqrt {x}\right ),k^2\right )}{\sqrt {(1-x) x \left (1-k^2 x\right )}}+\frac {\left (\left (b-2 a k^2\right ) \sqrt {2-2 x} \sqrt {1-x} \sqrt {-x} \sqrt {x} \sqrt {1-k^2 x}\right ) \int \frac {1}{\sqrt {2} \sqrt {2-2 x} \sqrt {-x} \sqrt {1-k^2 x} \left (1-\sqrt {-k^2} x\right )} \, dx}{2 \sqrt {2} k^2 \sqrt {(1-x) x \left (1-k^2 x\right )} \sqrt {x-x^2}}+\frac {\left (\left (b-2 a k^2\right ) \sqrt {2-2 x} \sqrt {1-x} \sqrt {-x} \sqrt {x} \sqrt {1-k^2 x}\right ) \int \frac {1}{\sqrt {2} \sqrt {2-2 x} \sqrt {-x} \sqrt {1-k^2 x} \left (1+\sqrt {-k^2} x\right )} \, dx}{2 \sqrt {2} k^2 \sqrt {(1-x) x \left (1-k^2 x\right )} \sqrt {x-x^2}}-\frac {\left (\left (b+2 a k^2\right ) \sqrt {2-2 x} \sqrt {1-x} \sqrt {-x} \sqrt {x} \sqrt {1-k^2 x}\right ) \int \frac {1}{\sqrt {2} \sqrt {2-2 x} \sqrt {-x} (1-k x) \sqrt {1-k^2 x}} \, dx}{2 \sqrt {2} k^2 \sqrt {(1-x) x \left (1-k^2 x\right )} \sqrt {x-x^2}}-\frac {\left (\left (b+2 a k^2\right ) \sqrt {2-2 x} \sqrt {1-x} \sqrt {-x} \sqrt {x} \sqrt {1-k^2 x}\right ) \int \frac {1}{\sqrt {2} \sqrt {2-2 x} \sqrt {-x} (1+k x) \sqrt {1-k^2 x}} \, dx}{2 \sqrt {2} k^2 \sqrt {(1-x) x \left (1-k^2 x\right )} \sqrt {x-x^2}} \\ & = \frac {2 a \sqrt {1-x} \sqrt {x} \sqrt {1-k^2 x} \operatorname {EllipticF}\left (\arcsin \left (\sqrt {x}\right ),k^2\right )}{\sqrt {(1-x) x \left (1-k^2 x\right )}}+\frac {\left (\left (b-2 a k^2\right ) \sqrt {2-2 x} \sqrt {1-x} \sqrt {-x} \sqrt {x} \sqrt {1-k^2 x}\right ) \int \frac {1}{\sqrt {2-2 x} \sqrt {-x} \sqrt {1-k^2 x} \left (1-\sqrt {-k^2} x\right )} \, dx}{4 k^2 \sqrt {(1-x) x \left (1-k^2 x\right )} \sqrt {x-x^2}}+\frac {\left (\left (b-2 a k^2\right ) \sqrt {2-2 x} \sqrt {1-x} \sqrt {-x} \sqrt {x} \sqrt {1-k^2 x}\right ) \int \frac {1}{\sqrt {2-2 x} \sqrt {-x} \sqrt {1-k^2 x} \left (1+\sqrt {-k^2} x\right )} \, dx}{4 k^2 \sqrt {(1-x) x \left (1-k^2 x\right )} \sqrt {x-x^2}}-\frac {\left (\left (b+2 a k^2\right ) \sqrt {2-2 x} \sqrt {1-x} \sqrt {-x} \sqrt {x} \sqrt {1-k^2 x}\right ) \int \frac {1}{\sqrt {2-2 x} \sqrt {-x} (1-k x) \sqrt {1-k^2 x}} \, dx}{4 k^2 \sqrt {(1-x) x \left (1-k^2 x\right )} \sqrt {x-x^2}}-\frac {\left (\left (b+2 a k^2\right ) \sqrt {2-2 x} \sqrt {1-x} \sqrt {-x} \sqrt {x} \sqrt {1-k^2 x}\right ) \int \frac {1}{\sqrt {2-2 x} \sqrt {-x} (1+k x) \sqrt {1-k^2 x}} \, dx}{4 k^2 \sqrt {(1-x) x \left (1-k^2 x\right )} \sqrt {x-x^2}} \\ & = \frac {2 a \sqrt {1-x} \sqrt {x} \sqrt {1-k^2 x} \operatorname {EllipticF}\left (\arcsin \left (\sqrt {x}\right ),k^2\right )}{\sqrt {(1-x) x \left (1-k^2 x\right )}}-\frac {\left (\left (b-2 a k^2\right ) \sqrt {2-2 x} \sqrt {1-x} \sqrt {-x} \sqrt {x} \sqrt {1-k^2 x}\right ) \text {Subst}\left (\int \frac {1}{\sqrt {2+2 x^2} \sqrt {1+k^2 x^2} \left (1-\sqrt {-k^2} x^2\right )} \, dx,x,\sqrt {-x}\right )}{2 k^2 \sqrt {(1-x) x \left (1-k^2 x\right )} \sqrt {x-x^2}}-\frac {\left (\left (b-2 a k^2\right ) \sqrt {2-2 x} \sqrt {1-x} \sqrt {-x} \sqrt {x} \sqrt {1-k^2 x}\right ) \text {Subst}\left (\int \frac {1}{\sqrt {2+2 x^2} \sqrt {1+k^2 x^2} \left (1+\sqrt {-k^2} x^2\right )} \, dx,x,\sqrt {-x}\right )}{2 k^2 \sqrt {(1-x) x \left (1-k^2 x\right )} \sqrt {x-x^2}}+\frac {\left (\left (b+2 a k^2\right ) \sqrt {2-2 x} \sqrt {1-x} \sqrt {-x} \sqrt {x} \sqrt {1-k^2 x}\right ) \text {Subst}\left (\int \frac {1}{\sqrt {2+2 x^2} \left (1-k x^2\right ) \sqrt {1+k^2 x^2}} \, dx,x,\sqrt {-x}\right )}{2 k^2 \sqrt {(1-x) x \left (1-k^2 x\right )} \sqrt {x-x^2}}+\frac {\left (\left (b+2 a k^2\right ) \sqrt {2-2 x} \sqrt {1-x} \sqrt {-x} \sqrt {x} \sqrt {1-k^2 x}\right ) \text {Subst}\left (\int \frac {1}{\sqrt {2+2 x^2} \left (1+k x^2\right ) \sqrt {1+k^2 x^2}} \, dx,x,\sqrt {-x}\right )}{2 k^2 \sqrt {(1-x) x \left (1-k^2 x\right )} \sqrt {x-x^2}} \\ & = \frac {2 a \sqrt {1-x} \sqrt {x} \sqrt {1-k^2 x} \operatorname {EllipticF}\left (\arcsin \left (\sqrt {x}\right ),k^2\right )}{\sqrt {(1-x) x \left (1-k^2 x\right )}}-\frac {\left (b+2 a k^2\right ) (1-x) \sqrt {-x} \sqrt {x} \sqrt {1-k^2 x} \operatorname {EllipticPi}\left (-\frac {1}{k},\arcsin \left (\sqrt {-k^2} \sqrt {-x}\right ),\frac {1}{k^2}\right )}{2 \left (-k^2\right )^{3/2} \sqrt {(1-x) x \left (1-k^2 x\right )} \sqrt {x-x^2}}-\frac {\left (b+2 a k^2\right ) (1-x) \sqrt {-x} \sqrt {x} \sqrt {1-k^2 x} \operatorname {EllipticPi}\left (\frac {1}{k},\arcsin \left (\sqrt {-k^2} \sqrt {-x}\right ),\frac {1}{k^2}\right )}{2 \left (-k^2\right )^{3/2} \sqrt {(1-x) x \left (1-k^2 x\right )} \sqrt {x-x^2}}+\frac {\left (b-2 a k^2\right ) (1-x) \sqrt {-x} \sqrt {x} \sqrt {1-k^2 x} \operatorname {EllipticPi}\left (-\frac {1}{\sqrt {-k^2}},\arcsin \left (\sqrt {-k^2} \sqrt {-x}\right ),\frac {1}{k^2}\right )}{2 \left (-k^2\right )^{3/2} \sqrt {(1-x) x \left (1-k^2 x\right )} \sqrt {x-x^2}}+\frac {\left (b-2 a k^2\right ) (1-x) \sqrt {-x} \sqrt {x} \sqrt {1-k^2 x} \operatorname {EllipticPi}\left (\frac {1}{\sqrt {-k^2}},\arcsin \left (\sqrt {-k^2} \sqrt {-x}\right ),\frac {1}{k^2}\right )}{2 \left (-k^2\right )^{3/2} \sqrt {(1-x) x \left (1-k^2 x\right )} \sqrt {x-x^2}} \\ \end{align*}

Mathematica [A] (verified)

Time = 12.48 (sec) , antiderivative size = 127, normalized size of antiderivative = 0.71 \[ \int \frac {a+b x^2+a k^4 x^4}{\sqrt {(1-x) x \left (1-k^2 x\right )} \left (-1+k^4 x^4\right )} \, dx=-\frac {\frac {\left (b+2 a k^2\right ) \arctan \left (\frac {(-1+k) x}{\sqrt {(-1+x) x \left (-1+k^2 x\right )}}\right )}{-1+k}+\frac {\left (b+2 a k^2\right ) \arctan \left (\frac {(1+k) x}{\sqrt {(-1+x) x \left (-1+k^2 x\right )}}\right )}{1+k}-\frac {2 \left (b-2 a k^2\right ) \arctan \left (\frac {\sqrt {1+k^2} x}{\sqrt {(-1+x) x \left (-1+k^2 x\right )}}\right )}{\sqrt {1+k^2}}}{4 k^2} \]

[In]

Integrate[(a + b*x^2 + a*k^4*x^4)/(Sqrt[(1 - x)*x*(1 - k^2*x)]*(-1 + k^4*x^4)),x]

[Out]

-1/4*(((b + 2*a*k^2)*ArcTan[((-1 + k)*x)/Sqrt[(-1 + x)*x*(-1 + k^2*x)]])/(-1 + k) + ((b + 2*a*k^2)*ArcTan[((1
+ k)*x)/Sqrt[(-1 + x)*x*(-1 + k^2*x)]])/(1 + k) - (2*(b - 2*a*k^2)*ArcTan[(Sqrt[1 + k^2]*x)/Sqrt[(-1 + x)*x*(-
1 + k^2*x)]])/Sqrt[1 + k^2])/k^2

Maple [A] (verified)

Time = 1.06 (sec) , antiderivative size = 129, normalized size of antiderivative = 0.72

method result size
default \(\frac {\frac {\left (2 a \,k^{2}+b \right ) \arctan \left (\frac {\sqrt {\left (-1+x \right ) x \left (k^{2} x -1\right )}}{\left (1+k \right ) x}\right )}{2+2 k}+\frac {\left (2 a \,k^{2}-b \right ) \arctan \left (\frac {\sqrt {\left (-1+x \right ) x \left (k^{2} x -1\right )}}{x \sqrt {k^{2}+1}}\right )}{\sqrt {k^{2}+1}}+\frac {\left (2 a \,k^{2}+b \right ) \arctan \left (\frac {\sqrt {\left (-1+x \right ) x \left (k^{2} x -1\right )}}{\left (-1+k \right ) x}\right )}{-2+2 k}}{2 k^{2}}\) \(129\)
pseudoelliptic \(\frac {\frac {\left (2 a \,k^{2}+b \right ) \arctan \left (\frac {\sqrt {\left (-1+x \right ) x \left (k^{2} x -1\right )}}{\left (1+k \right ) x}\right )}{2+2 k}+\frac {\left (2 a \,k^{2}-b \right ) \arctan \left (\frac {\sqrt {\left (-1+x \right ) x \left (k^{2} x -1\right )}}{x \sqrt {k^{2}+1}}\right )}{\sqrt {k^{2}+1}}+\frac {\left (2 a \,k^{2}+b \right ) \arctan \left (\frac {\sqrt {\left (-1+x \right ) x \left (k^{2} x -1\right )}}{\left (-1+k \right ) x}\right )}{-2+2 k}}{2 k^{2}}\) \(129\)
elliptic \(-\frac {2 a \sqrt {-k^{2} x +1}\, \sqrt {-\frac {1}{\frac {1}{k^{2}}-1}+\frac {x}{\frac {1}{k^{2}}-1}}\, \sqrt {k^{2} x}\, \operatorname {EllipticF}\left (\sqrt {-\left (x -\frac {1}{k^{2}}\right ) k^{2}}, \sqrt {\frac {1}{k^{2} \left (\frac {1}{k^{2}}-1\right )}}\right )}{k^{2} \sqrt {k^{2} x^{3}-k^{2} x^{2}-x^{2}+x}}-\frac {\sqrt {-k^{2} x +1}\, \sqrt {-\frac {1}{\frac {1}{k^{2}}-1}+\frac {x}{\frac {1}{k^{2}}-1}}\, \sqrt {k^{2} x}\, \operatorname {EllipticPi}\left (\sqrt {-\left (x -\frac {1}{k^{2}}\right ) k^{2}}, \frac {1}{k^{2} \left (\frac {1}{k^{2}}-1\right )}, \sqrt {\frac {1}{k^{2} \left (\frac {1}{k^{2}}-1\right )}}\right ) a}{k^{2} \sqrt {k^{2} x^{3}-k^{2} x^{2}-x^{2}+x}\, \left (\frac {1}{k^{2}}-1\right )}-\frac {\sqrt {-k^{2} x +1}\, \sqrt {-\frac {1}{\frac {1}{k^{2}}-1}+\frac {x}{\frac {1}{k^{2}}-1}}\, \sqrt {k^{2} x}\, \operatorname {EllipticPi}\left (\sqrt {-\left (x -\frac {1}{k^{2}}\right ) k^{2}}, \frac {1}{k^{2} \left (\frac {1}{k^{2}}-1\right )}, \sqrt {\frac {1}{k^{2} \left (\frac {1}{k^{2}}-1\right )}}\right ) b}{2 k^{4} \sqrt {k^{2} x^{3}-k^{2} x^{2}-x^{2}+x}\, \left (\frac {1}{k^{2}}-1\right )}-\frac {\left (2 a \,k^{2}-b \right ) \sqrt {-k^{2} x +1}\, \sqrt {-\frac {\left (-1+x \right ) k^{2}}{k^{2}-1}}\, \sqrt {k^{2} x}\, \left (\munderset {\underline {\hspace {1.25 ex}}\alpha =\operatorname {RootOf}\left (\textit {\_Z}^{2} k^{2}+1\right )}{\sum }\operatorname {EllipticPi}\left (\sqrt {-k^{2} x +1}, \frac {\underline {\hspace {1.25 ex}}\alpha \,k^{2}+1}{k^{2}+1}, \sqrt {-\frac {1}{k^{2}-1}}\right )\right )}{2 k^{2} \left (k^{2}+1\right ) \sqrt {x \left (k^{2} x^{2}-k^{2} x -x +1\right )}}-\frac {\left (2 a \,k^{2}-b \right ) \sqrt {-k^{2} x +1}\, \sqrt {-\frac {\left (-1+x \right ) k^{2}}{k^{2}-1}}\, \sqrt {k^{2} x}\, \left (\munderset {\underline {\hspace {1.25 ex}}\alpha =\operatorname {RootOf}\left (\textit {\_Z}^{2} k^{2}+1\right )}{\sum }\frac {\operatorname {EllipticPi}\left (\sqrt {-k^{2} x +1}, \frac {\underline {\hspace {1.25 ex}}\alpha \,k^{2}+1}{k^{2}+1}, \sqrt {-\frac {1}{k^{2}-1}}\right )}{\underline {\hspace {1.25 ex}}\alpha }\right )}{2 k^{4} \left (k^{2}+1\right ) \sqrt {x \left (k^{2} x^{2}-k^{2} x -x +1\right )}}+\frac {\sqrt {-k^{2} x +1}\, \sqrt {-\frac {1}{\frac {1}{k^{2}}-1}+\frac {x}{\frac {1}{k^{2}}-1}}\, \sqrt {k^{2} x}\, \operatorname {EllipticPi}\left (\sqrt {-\left (x -\frac {1}{k^{2}}\right ) k^{2}}, \frac {1}{k^{2} \left (\frac {1}{k^{2}}+1\right )}, \sqrt {\frac {1}{k^{2} \left (\frac {1}{k^{2}}-1\right )}}\right ) a}{k^{2} \sqrt {k^{2} x^{3}-k^{2} x^{2}-x^{2}+x}\, \left (\frac {1}{k^{2}}+1\right )}+\frac {\sqrt {-k^{2} x +1}\, \sqrt {-\frac {1}{\frac {1}{k^{2}}-1}+\frac {x}{\frac {1}{k^{2}}-1}}\, \sqrt {k^{2} x}\, \operatorname {EllipticPi}\left (\sqrt {-\left (x -\frac {1}{k^{2}}\right ) k^{2}}, \frac {1}{k^{2} \left (\frac {1}{k^{2}}+1\right )}, \sqrt {\frac {1}{k^{2} \left (\frac {1}{k^{2}}-1\right )}}\right ) b}{2 k^{4} \sqrt {k^{2} x^{3}-k^{2} x^{2}-x^{2}+x}\, \left (\frac {1}{k^{2}}+1\right )}\) \(813\)

[In]

int((a*k^4*x^4+b*x^2+a)/((1-x)*x*(-k^2*x+1))^(1/2)/(k^4*x^4-1),x,method=_RETURNVERBOSE)

[Out]

1/2/k^2*(1/2*(2*a*k^2+b)*arctan(((-1+x)*x*(k^2*x-1))^(1/2)/(1+k)/x)/(1+k)+(2*a*k^2-b)/(k^2+1)^(1/2)*arctan(((-
1+x)*x*(k^2*x-1))^(1/2)/x/(k^2+1)^(1/2))+1/2*(2*a*k^2+b)*arctan(((-1+x)*x*(k^2*x-1))^(1/2)/(-1+k)/x)/(-1+k))

Fricas [B] (verification not implemented)

Leaf count of result is larger than twice the leaf count of optimal. 356 vs. \(2 (157) = 314\).

Time = 0.73 (sec) , antiderivative size = 356, normalized size of antiderivative = 2.00 \[ \int \frac {a+b x^2+a k^4 x^4}{\sqrt {(1-x) x \left (1-k^2 x\right )} \left (-1+k^4 x^4\right )} \, dx=\frac {2 \, {\left (2 \, a k^{4} - {\left (2 \, a + b\right )} k^{2} + b\right )} \sqrt {k^{2} + 1} \arctan \left (\frac {\sqrt {k^{2} x^{3} - {\left (k^{2} + 1\right )} x^{2} + x} {\left (k^{2} x^{2} - 2 \, {\left (k^{2} + 1\right )} x + 1\right )} \sqrt {k^{2} + 1}}{2 \, {\left ({\left (k^{4} + k^{2}\right )} x^{3} - {\left (k^{4} + 2 \, k^{2} + 1\right )} x^{2} + {\left (k^{2} + 1\right )} x\right )}}\right ) + {\left (2 \, a k^{5} - 2 \, a k^{4} + {\left (2 \, a + b\right )} k^{3} - {\left (2 \, a + b\right )} k^{2} + b k - b\right )} \arctan \left (\frac {\sqrt {k^{2} x^{3} - {\left (k^{2} + 1\right )} x^{2} + x} {\left (k^{2} x^{2} - 2 \, {\left (k^{2} + k + 1\right )} x + 1\right )}}{2 \, {\left ({\left (k^{3} + k^{2}\right )} x^{3} - {\left (k^{3} + k^{2} + k + 1\right )} x^{2} + {\left (k + 1\right )} x\right )}}\right ) + {\left (2 \, a k^{5} + 2 \, a k^{4} + {\left (2 \, a + b\right )} k^{3} + {\left (2 \, a + b\right )} k^{2} + b k + b\right )} \arctan \left (\frac {\sqrt {k^{2} x^{3} - {\left (k^{2} + 1\right )} x^{2} + x} {\left (k^{2} x^{2} - 2 \, {\left (k^{2} - k + 1\right )} x + 1\right )}}{2 \, {\left ({\left (k^{3} - k^{2}\right )} x^{3} - {\left (k^{3} - k^{2} + k - 1\right )} x^{2} + {\left (k - 1\right )} x\right )}}\right )}{8 \, {\left (k^{6} - k^{2}\right )}} \]

[In]

integrate((a*k^4*x^4+b*x^2+a)/((1-x)*x*(-k^2*x+1))^(1/2)/(k^4*x^4-1),x, algorithm="fricas")

[Out]

1/8*(2*(2*a*k^4 - (2*a + b)*k^2 + b)*sqrt(k^2 + 1)*arctan(1/2*sqrt(k^2*x^3 - (k^2 + 1)*x^2 + x)*(k^2*x^2 - 2*(
k^2 + 1)*x + 1)*sqrt(k^2 + 1)/((k^4 + k^2)*x^3 - (k^4 + 2*k^2 + 1)*x^2 + (k^2 + 1)*x)) + (2*a*k^5 - 2*a*k^4 +
(2*a + b)*k^3 - (2*a + b)*k^2 + b*k - b)*arctan(1/2*sqrt(k^2*x^3 - (k^2 + 1)*x^2 + x)*(k^2*x^2 - 2*(k^2 + k +
1)*x + 1)/((k^3 + k^2)*x^3 - (k^3 + k^2 + k + 1)*x^2 + (k + 1)*x)) + (2*a*k^5 + 2*a*k^4 + (2*a + b)*k^3 + (2*a
 + b)*k^2 + b*k + b)*arctan(1/2*sqrt(k^2*x^3 - (k^2 + 1)*x^2 + x)*(k^2*x^2 - 2*(k^2 - k + 1)*x + 1)/((k^3 - k^
2)*x^3 - (k^3 - k^2 + k - 1)*x^2 + (k - 1)*x)))/(k^6 - k^2)

Sympy [F]

\[ \int \frac {a+b x^2+a k^4 x^4}{\sqrt {(1-x) x \left (1-k^2 x\right )} \left (-1+k^4 x^4\right )} \, dx=\int \frac {a k^{4} x^{4} + a + b x^{2}}{\sqrt {x \left (x - 1\right ) \left (k^{2} x - 1\right )} \left (k x - 1\right ) \left (k x + 1\right ) \left (k^{2} x^{2} + 1\right )}\, dx \]

[In]

integrate((a*k**4*x**4+b*x**2+a)/((1-x)*x*(-k**2*x+1))**(1/2)/(k**4*x**4-1),x)

[Out]

Integral((a*k**4*x**4 + a + b*x**2)/(sqrt(x*(x - 1)*(k**2*x - 1))*(k*x - 1)*(k*x + 1)*(k**2*x**2 + 1)), x)

Maxima [F]

\[ \int \frac {a+b x^2+a k^4 x^4}{\sqrt {(1-x) x \left (1-k^2 x\right )} \left (-1+k^4 x^4\right )} \, dx=\int { \frac {a k^{4} x^{4} + b x^{2} + a}{{\left (k^{4} x^{4} - 1\right )} \sqrt {{\left (k^{2} x - 1\right )} {\left (x - 1\right )} x}} \,d x } \]

[In]

integrate((a*k^4*x^4+b*x^2+a)/((1-x)*x*(-k^2*x+1))^(1/2)/(k^4*x^4-1),x, algorithm="maxima")

[Out]

integrate((a*k^4*x^4 + b*x^2 + a)/((k^4*x^4 - 1)*sqrt((k^2*x - 1)*(x - 1)*x)), x)

Giac [F]

\[ \int \frac {a+b x^2+a k^4 x^4}{\sqrt {(1-x) x \left (1-k^2 x\right )} \left (-1+k^4 x^4\right )} \, dx=\int { \frac {a k^{4} x^{4} + b x^{2} + a}{{\left (k^{4} x^{4} - 1\right )} \sqrt {{\left (k^{2} x - 1\right )} {\left (x - 1\right )} x}} \,d x } \]

[In]

integrate((a*k^4*x^4+b*x^2+a)/((1-x)*x*(-k^2*x+1))^(1/2)/(k^4*x^4-1),x, algorithm="giac")

[Out]

integrate((a*k^4*x^4 + b*x^2 + a)/((k^4*x^4 - 1)*sqrt((k^2*x - 1)*(x - 1)*x)), x)

Mupad [F(-1)]

Timed out. \[ \int \frac {a+b x^2+a k^4 x^4}{\sqrt {(1-x) x \left (1-k^2 x\right )} \left (-1+k^4 x^4\right )} \, dx=\text {Hanged} \]

[In]

int((a + b*x^2 + a*k^4*x^4)/((k^4*x^4 - 1)*(x*(k^2*x - 1)*(x - 1))^(1/2)),x)

[Out]

\text{Hanged}