\(\int \frac {x^2}{(x^2 (-a+x))^{2/3} (-a^2+2 a x+(-1+d) x^2)} \, dx\) [2488]

   Optimal result
   Rubi [A] (verified)
   Mathematica [A] (verified)
   Maple [A] (verified)
   Fricas [B] (verification not implemented)
   Sympy [F]
   Maxima [F]
   Giac [A] (verification not implemented)
   Mupad [F(-1)]

Optimal result

Integrand size = 36, antiderivative size = 205 \[ \int \frac {x^2}{\left (x^2 (-a+x)\right )^{2/3} \left (-a^2+2 a x+(-1+d) x^2\right )} \, dx=\frac {\sqrt {3} \arctan \left (\frac {\sqrt {3} \sqrt [6]{d} x}{\sqrt [6]{d} x-2 \sqrt [3]{-a x^2+x^3}}\right )}{2 a d^{5/6}}-\frac {\sqrt {3} \arctan \left (\frac {\sqrt {3} \sqrt [6]{d} x}{\sqrt [6]{d} x+2 \sqrt [3]{-a x^2+x^3}}\right )}{2 a d^{5/6}}+\frac {\text {arctanh}\left (\frac {\sqrt [6]{d} x}{\sqrt [3]{-a x^2+x^3}}\right )}{a d^{5/6}}+\frac {\text {arctanh}\left (\frac {\sqrt [6]{d} x^2+\frac {\left (-a x^2+x^3\right )^{2/3}}{\sqrt [6]{d}}}{x \sqrt [3]{-a x^2+x^3}}\right )}{2 a d^{5/6}} \]

[Out]

1/2*3^(1/2)*arctan(3^(1/2)*d^(1/6)*x/(d^(1/6)*x-2*(-a*x^2+x^3)^(1/3)))/a/d^(5/6)-1/2*3^(1/2)*arctan(3^(1/2)*d^
(1/6)*x/(d^(1/6)*x+2*(-a*x^2+x^3)^(1/3)))/a/d^(5/6)+arctanh(d^(1/6)*x/(-a*x^2+x^3)^(1/3))/a/d^(5/6)+1/2*arctan
h((d^(1/6)*x^2+(-a*x^2+x^3)^(2/3)/d^(1/6))/x/(-a*x^2+x^3)^(1/3))/a/d^(5/6)

Rubi [A] (verified)

Time = 0.64 (sec) , antiderivative size = 397, normalized size of antiderivative = 1.94, number of steps used = 11, number of rules used = 6, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.167, Rules used = {6851, 925, 129, 494, 337, 503} \[ \int \frac {x^2}{\left (x^2 (-a+x)\right )^{2/3} \left (-a^2+2 a x+(-1+d) x^2\right )} \, dx=\frac {\sqrt {3} x^{4/3} (x-a)^{2/3} \arctan \left (\frac {1-\frac {2 \sqrt [6]{d} \sqrt [3]{x}}{\sqrt [3]{x-a}}}{\sqrt {3}}\right )}{2 a d^{5/6} \left (-\left (x^2 (a-x)\right )\right )^{2/3}}-\frac {\sqrt {3} x^{4/3} (x-a)^{2/3} \arctan \left (\frac {\frac {2 \sqrt [6]{d} \sqrt [3]{x}}{\sqrt [3]{x-a}}+1}{\sqrt {3}}\right )}{2 a d^{5/6} \left (-\left (x^2 (a-x)\right )\right )^{2/3}}-\frac {x^{4/3} (x-a)^{2/3} \log \left (a \left (1-\sqrt {d}\right )-(1-d) x\right )}{4 a d^{5/6} \left (-\left (x^2 (a-x)\right )\right )^{2/3}}+\frac {x^{4/3} (x-a)^{2/3} \log \left (a \left (\sqrt {d}+1\right )-(1-d) x\right )}{4 a d^{5/6} \left (-\left (x^2 (a-x)\right )\right )^{2/3}}-\frac {3 x^{4/3} (x-a)^{2/3} \log \left (\sqrt [6]{d} \sqrt [3]{x}-\sqrt [3]{x-a}\right )}{4 a d^{5/6} \left (-\left (x^2 (a-x)\right )\right )^{2/3}}+\frac {3 x^{4/3} (x-a)^{2/3} \log \left (\sqrt [3]{x-a}+\sqrt [6]{d} \sqrt [3]{x}\right )}{4 a d^{5/6} \left (-\left (x^2 (a-x)\right )\right )^{2/3}} \]

[In]

Int[x^2/((x^2*(-a + x))^(2/3)*(-a^2 + 2*a*x + (-1 + d)*x^2)),x]

[Out]

(Sqrt[3]*x^(4/3)*(-a + x)^(2/3)*ArcTan[(1 - (2*d^(1/6)*x^(1/3))/(-a + x)^(1/3))/Sqrt[3]])/(2*a*d^(5/6)*(-((a -
 x)*x^2))^(2/3)) - (Sqrt[3]*x^(4/3)*(-a + x)^(2/3)*ArcTan[(1 + (2*d^(1/6)*x^(1/3))/(-a + x)^(1/3))/Sqrt[3]])/(
2*a*d^(5/6)*(-((a - x)*x^2))^(2/3)) - (x^(4/3)*(-a + x)^(2/3)*Log[a*(1 - Sqrt[d]) - (1 - d)*x])/(4*a*d^(5/6)*(
-((a - x)*x^2))^(2/3)) + (x^(4/3)*(-a + x)^(2/3)*Log[a*(1 + Sqrt[d]) - (1 - d)*x])/(4*a*d^(5/6)*(-((a - x)*x^2
))^(2/3)) - (3*x^(4/3)*(-a + x)^(2/3)*Log[d^(1/6)*x^(1/3) - (-a + x)^(1/3)])/(4*a*d^(5/6)*(-((a - x)*x^2))^(2/
3)) + (3*x^(4/3)*(-a + x)^(2/3)*Log[d^(1/6)*x^(1/3) + (-a + x)^(1/3)])/(4*a*d^(5/6)*(-((a - x)*x^2))^(2/3))

Rule 129

Int[((e_.)*(x_))^(p_)*((a_) + (b_.)*(x_))^(m_)*((c_) + (d_.)*(x_))^(n_), x_Symbol] :> With[{k = Denominator[p]
}, Dist[k/e, Subst[Int[x^(k*(p + 1) - 1)*(a + b*(x^k/e))^m*(c + d*(x^k/e))^n, x], x, (e*x)^(1/k)], x]] /; Free
Q[{a, b, c, d, e, m, n}, x] && NeQ[b*c - a*d, 0] && FractionQ[p] && IntegerQ[m]

Rule 337

Int[(x_)/((a_) + (b_.)*(x_)^3)^(2/3), x_Symbol] :> With[{q = Rt[b, 3]}, Simp[-ArcTan[(1 + 2*q*(x/(a + b*x^3)^(
1/3)))/Sqrt[3]]/(Sqrt[3]*q^2), x] - Simp[Log[q*x - (a + b*x^3)^(1/3)]/(2*q^2), x]] /; FreeQ[{a, b}, x]

Rule 494

Int[(((e_.)*(x_))^(m_)*((c_) + (d_.)*(x_)^(n_))^(q_.))/((a_) + (b_.)*(x_)^(n_)), x_Symbol] :> Dist[e^n/b, Int[
(e*x)^(m - n)*(c + d*x^n)^q, x], x] - Dist[a*(e^n/b), Int[(e*x)^(m - n)*((c + d*x^n)^q/(a + b*x^n)), x], x] /;
 FreeQ[{a, b, c, d, e, m, q}, x] && NeQ[b*c - a*d, 0] && IGtQ[n, 0] && LeQ[n, m, 2*n - 1] && IntBinomialQ[a, b
, c, d, e, m, n, -1, q, x]

Rule 503

Int[(x_)/(((a_) + (b_.)*(x_)^3)^(2/3)*((c_) + (d_.)*(x_)^3)), x_Symbol] :> With[{q = Rt[(b*c - a*d)/c, 3]}, Si
mp[-ArcTan[(1 + (2*q*x)/(a + b*x^3)^(1/3))/Sqrt[3]]/(Sqrt[3]*c*q^2), x] + (-Simp[Log[q*x - (a + b*x^3)^(1/3)]/
(2*c*q^2), x] + Simp[Log[c + d*x^3]/(6*c*q^2), x])] /; FreeQ[{a, b, c, d}, x] && NeQ[b*c - a*d, 0]

Rule 925

Int[(((d_.) + (e_.)*(x_))^(m_)*((f_.) + (g_.)*(x_))^(n_))/((a_.) + (b_.)*(x_) + (c_.)*(x_)^2), x_Symbol] :> In
t[ExpandIntegrand[(d + e*x)^m*(f + g*x)^n, 1/(a + b*x + c*x^2), x], x] /; FreeQ[{a, b, c, d, e, f, g, m, n}, x
] && NeQ[b^2 - 4*a*c, 0] && NeQ[c*d^2 - b*d*e + a*e^2, 0] &&  !IntegerQ[m] &&  !IntegerQ[n]

Rule 6851

Int[(u_.)*((a_.)*(v_)^(m_.)*(w_)^(n_.))^(p_), x_Symbol] :> Dist[a^IntPart[p]*((a*v^m*w^n)^FracPart[p]/(v^(m*Fr
acPart[p])*w^(n*FracPart[p]))), Int[u*v^(m*p)*w^(n*p), x], x] /; FreeQ[{a, m, n, p}, x] &&  !IntegerQ[p] &&  !
FreeQ[v, x] &&  !FreeQ[w, x]

Rubi steps \begin{align*} \text {integral}& = \frac {\left (x^{4/3} (-a+x)^{2/3}\right ) \int \frac {x^{2/3}}{(-a+x)^{2/3} \left (-a^2+2 a x+(-1+d) x^2\right )} \, dx}{\left (x^2 (-a+x)\right )^{2/3}} \\ & = \frac {\left (x^{4/3} (-a+x)^{2/3}\right ) \int \left (\frac {(-1+d) x^{2/3}}{a \sqrt {d} (-a+x)^{2/3} \left (2 a-2 a \sqrt {d}-2 (1-d) x\right )}+\frac {(-1+d) x^{2/3}}{a \sqrt {d} (-a+x)^{2/3} \left (-2 a-2 a \sqrt {d}+2 (1-d) x\right )}\right ) \, dx}{\left (x^2 (-a+x)\right )^{2/3}} \\ & = -\frac {\left ((1-d) x^{4/3} (-a+x)^{2/3}\right ) \int \frac {x^{2/3}}{(-a+x)^{2/3} \left (2 a-2 a \sqrt {d}-2 (1-d) x\right )} \, dx}{a \sqrt {d} \left (x^2 (-a+x)\right )^{2/3}}-\frac {\left ((1-d) x^{4/3} (-a+x)^{2/3}\right ) \int \frac {x^{2/3}}{(-a+x)^{2/3} \left (-2 a-2 a \sqrt {d}+2 (1-d) x\right )} \, dx}{a \sqrt {d} \left (x^2 (-a+x)\right )^{2/3}} \\ & = -\frac {\left (3 (1-d) x^{4/3} (-a+x)^{2/3}\right ) \text {Subst}\left (\int \frac {x^4}{\left (-a+x^3\right )^{2/3} \left (2 a-2 a \sqrt {d}-2 (1-d) x^3\right )} \, dx,x,\sqrt [3]{x}\right )}{a \sqrt {d} \left (x^2 (-a+x)\right )^{2/3}}-\frac {\left (3 (1-d) x^{4/3} (-a+x)^{2/3}\right ) \text {Subst}\left (\int \frac {x^4}{\left (-a+x^3\right )^{2/3} \left (-2 a-2 a \sqrt {d}+2 (1-d) x^3\right )} \, dx,x,\sqrt [3]{x}\right )}{a \sqrt {d} \left (x^2 (-a+x)\right )^{2/3}} \\ & = -\frac {\left (3 (1-d) x^{4/3} (-a+x)^{2/3}\right ) \text {Subst}\left (\int \frac {x}{\left (-a+x^3\right )^{2/3} \left (-2 a-2 a \sqrt {d}+2 (1-d) x^3\right )} \, dx,x,\sqrt [3]{x}\right )}{\left (1-\sqrt {d}\right ) \sqrt {d} \left (x^2 (-a+x)\right )^{2/3}}-\frac {\left (3 (1-d) x^{4/3} (-a+x)^{2/3}\right ) \text {Subst}\left (\int \frac {x}{\left (-a+x^3\right )^{2/3} \left (2 a-2 a \sqrt {d}-2 (1-d) x^3\right )} \, dx,x,\sqrt [3]{x}\right )}{\left (1+\sqrt {d}\right ) \sqrt {d} \left (x^2 (-a+x)\right )^{2/3}} \\ & = \frac {\sqrt {3} x^{4/3} (-a+x)^{2/3} \arctan \left (\frac {1-\frac {2 \sqrt [6]{d} \sqrt [3]{x}}{\sqrt [3]{-a+x}}}{\sqrt {3}}\right )}{2 a d^{5/6} \left (-\left ((a-x) x^2\right )\right )^{2/3}}-\frac {\sqrt {3} x^{4/3} (-a+x)^{2/3} \arctan \left (\frac {1+\frac {2 \sqrt [6]{d} \sqrt [3]{x}}{\sqrt [3]{-a+x}}}{\sqrt {3}}\right )}{2 a d^{5/6} \left (-\left ((a-x) x^2\right )\right )^{2/3}}-\frac {x^{4/3} (-a+x)^{2/3} \log \left (a \left (1-\sqrt {d}\right )-(1-d) x\right )}{4 a d^{5/6} \left (-\left ((a-x) x^2\right )\right )^{2/3}}+\frac {x^{4/3} (-a+x)^{2/3} \log \left (a \left (1+\sqrt {d}\right )-(1-d) x\right )}{4 a d^{5/6} \left (-\left ((a-x) x^2\right )\right )^{2/3}}-\frac {3 x^{4/3} (-a+x)^{2/3} \log \left (\sqrt [6]{d} \sqrt [3]{x}-\sqrt [3]{-a+x}\right )}{4 a d^{5/6} \left (-\left ((a-x) x^2\right )\right )^{2/3}}+\frac {3 x^{4/3} (-a+x)^{2/3} \log \left (\sqrt [6]{d} \sqrt [3]{x}+\sqrt [3]{-a+x}\right )}{4 a d^{5/6} \left (-\left ((a-x) x^2\right )\right )^{2/3}} \\ \end{align*}

Mathematica [A] (verified)

Time = 0.61 (sec) , antiderivative size = 198, normalized size of antiderivative = 0.97 \[ \int \frac {x^2}{\left (x^2 (-a+x)\right )^{2/3} \left (-a^2+2 a x+(-1+d) x^2\right )} \, dx=\frac {x^{4/3} (-a+x)^{2/3} \left (\sqrt {3} \left (\arctan \left (\frac {\sqrt {3} \sqrt [6]{d} \sqrt [3]{x}}{\sqrt [6]{d} \sqrt [3]{x}-2 \sqrt [3]{-a+x}}\right )-\arctan \left (\frac {\sqrt {3} \sqrt [6]{d} \sqrt [3]{x}}{\sqrt [6]{d} \sqrt [3]{x}+2 \sqrt [3]{-a+x}}\right )\right )+2 \text {arctanh}\left (\frac {\sqrt [6]{d} \sqrt [3]{x}}{\sqrt [3]{-a+x}}\right )+\text {arctanh}\left (\frac {\sqrt [6]{d} \sqrt [3]{x}}{\sqrt [3]{-a+x}}+\frac {\sqrt [3]{-a+x}}{\sqrt [6]{d} \sqrt [3]{x}}\right )\right )}{2 a d^{5/6} \left (x^2 (-a+x)\right )^{2/3}} \]

[In]

Integrate[x^2/((x^2*(-a + x))^(2/3)*(-a^2 + 2*a*x + (-1 + d)*x^2)),x]

[Out]

(x^(4/3)*(-a + x)^(2/3)*(Sqrt[3]*(ArcTan[(Sqrt[3]*d^(1/6)*x^(1/3))/(d^(1/6)*x^(1/3) - 2*(-a + x)^(1/3))] - Arc
Tan[(Sqrt[3]*d^(1/6)*x^(1/3))/(d^(1/6)*x^(1/3) + 2*(-a + x)^(1/3))]) + 2*ArcTanh[(d^(1/6)*x^(1/3))/(-a + x)^(1
/3)] + ArcTanh[(d^(1/6)*x^(1/3))/(-a + x)^(1/3) + (-a + x)^(1/3)/(d^(1/6)*x^(1/3))]))/(2*a*d^(5/6)*(x^2*(-a +
x))^(2/3))

Maple [A] (verified)

Time = 1.24 (sec) , antiderivative size = 223, normalized size of antiderivative = 1.09

method result size
pseudoelliptic \(\frac {2 \sqrt {3}\, \arctan \left (\frac {\sqrt {3}\, \left (d^{\frac {1}{6}} x +2 \left (-x^{2} \left (a -x \right )\right )^{\frac {1}{3}}\right )}{3 d^{\frac {1}{6}} x}\right )-2 \sqrt {3}\, \arctan \left (\frac {\sqrt {3}\, \left (d^{\frac {1}{6}} x -2 \left (-x^{2} \left (a -x \right )\right )^{\frac {1}{3}}\right )}{3 d^{\frac {1}{6}} x}\right )-2 \ln \left (\frac {d^{\frac {1}{6}} x -\left (-x^{2} \left (a -x \right )\right )^{\frac {1}{3}}}{x}\right )+\ln \left (\frac {d^{\frac {1}{3}} x^{2}+d^{\frac {1}{6}} \left (-x^{2} \left (a -x \right )\right )^{\frac {1}{3}} x +\left (-x^{2} \left (a -x \right )\right )^{\frac {2}{3}}}{x^{2}}\right )-\ln \left (\frac {d^{\frac {1}{3}} x^{2}-d^{\frac {1}{6}} \left (-x^{2} \left (a -x \right )\right )^{\frac {1}{3}} x +\left (-x^{2} \left (a -x \right )\right )^{\frac {2}{3}}}{x^{2}}\right )+2 \ln \left (\frac {d^{\frac {1}{6}} x +\left (-x^{2} \left (a -x \right )\right )^{\frac {1}{3}}}{x}\right )}{4 d^{\frac {5}{6}} a}\) \(223\)

[In]

int(x^2/(x^2*(-a+x))^(2/3)/(-a^2+2*a*x+(-1+d)*x^2),x,method=_RETURNVERBOSE)

[Out]

1/4*(2*3^(1/2)*arctan(1/3*3^(1/2)*(d^(1/6)*x+2*(-x^2*(a-x))^(1/3))/d^(1/6)/x)-2*3^(1/2)*arctan(1/3*3^(1/2)*(d^
(1/6)*x-2*(-x^2*(a-x))^(1/3))/d^(1/6)/x)-2*ln((d^(1/6)*x-(-x^2*(a-x))^(1/3))/x)+ln((d^(1/3)*x^2+d^(1/6)*(-x^2*
(a-x))^(1/3)*x+(-x^2*(a-x))^(2/3))/x^2)-ln((d^(1/3)*x^2-d^(1/6)*(-x^2*(a-x))^(1/3)*x+(-x^2*(a-x))^(2/3))/x^2)+
2*ln((d^(1/6)*x+(-x^2*(a-x))^(1/3))/x))/d^(5/6)/a

Fricas [B] (verification not implemented)

Leaf count of result is larger than twice the leaf count of optimal. 326 vs. \(2 (159) = 318\).

Time = 0.25 (sec) , antiderivative size = 326, normalized size of antiderivative = 1.59 \[ \int \frac {x^2}{\left (x^2 (-a+x)\right )^{2/3} \left (-a^2+2 a x+(-1+d) x^2\right )} \, dx=\frac {1}{4} \, {\left (\sqrt {-3} + 1\right )} \left (\frac {1}{a^{6} d^{5}}\right )^{\frac {1}{6}} \log \left (\frac {{\left (\sqrt {-3} a d x + a d x\right )} \left (\frac {1}{a^{6} d^{5}}\right )^{\frac {1}{6}} + 2 \, {\left (-a x^{2} + x^{3}\right )}^{\frac {1}{3}}}{2 \, x}\right ) - \frac {1}{4} \, {\left (\sqrt {-3} + 1\right )} \left (\frac {1}{a^{6} d^{5}}\right )^{\frac {1}{6}} \log \left (-\frac {{\left (\sqrt {-3} a d x + a d x\right )} \left (\frac {1}{a^{6} d^{5}}\right )^{\frac {1}{6}} - 2 \, {\left (-a x^{2} + x^{3}\right )}^{\frac {1}{3}}}{2 \, x}\right ) + \frac {1}{4} \, {\left (\sqrt {-3} - 1\right )} \left (\frac {1}{a^{6} d^{5}}\right )^{\frac {1}{6}} \log \left (\frac {{\left (\sqrt {-3} a d x - a d x\right )} \left (\frac {1}{a^{6} d^{5}}\right )^{\frac {1}{6}} + 2 \, {\left (-a x^{2} + x^{3}\right )}^{\frac {1}{3}}}{2 \, x}\right ) - \frac {1}{4} \, {\left (\sqrt {-3} - 1\right )} \left (\frac {1}{a^{6} d^{5}}\right )^{\frac {1}{6}} \log \left (-\frac {{\left (\sqrt {-3} a d x - a d x\right )} \left (\frac {1}{a^{6} d^{5}}\right )^{\frac {1}{6}} - 2 \, {\left (-a x^{2} + x^{3}\right )}^{\frac {1}{3}}}{2 \, x}\right ) + \frac {1}{2} \, \left (\frac {1}{a^{6} d^{5}}\right )^{\frac {1}{6}} \log \left (\frac {a d x \left (\frac {1}{a^{6} d^{5}}\right )^{\frac {1}{6}} + {\left (-a x^{2} + x^{3}\right )}^{\frac {1}{3}}}{x}\right ) - \frac {1}{2} \, \left (\frac {1}{a^{6} d^{5}}\right )^{\frac {1}{6}} \log \left (-\frac {a d x \left (\frac {1}{a^{6} d^{5}}\right )^{\frac {1}{6}} - {\left (-a x^{2} + x^{3}\right )}^{\frac {1}{3}}}{x}\right ) \]

[In]

integrate(x^2/(x^2*(-a+x))^(2/3)/(-a^2+2*a*x+(-1+d)*x^2),x, algorithm="fricas")

[Out]

1/4*(sqrt(-3) + 1)*(1/(a^6*d^5))^(1/6)*log(1/2*((sqrt(-3)*a*d*x + a*d*x)*(1/(a^6*d^5))^(1/6) + 2*(-a*x^2 + x^3
)^(1/3))/x) - 1/4*(sqrt(-3) + 1)*(1/(a^6*d^5))^(1/6)*log(-1/2*((sqrt(-3)*a*d*x + a*d*x)*(1/(a^6*d^5))^(1/6) -
2*(-a*x^2 + x^3)^(1/3))/x) + 1/4*(sqrt(-3) - 1)*(1/(a^6*d^5))^(1/6)*log(1/2*((sqrt(-3)*a*d*x - a*d*x)*(1/(a^6*
d^5))^(1/6) + 2*(-a*x^2 + x^3)^(1/3))/x) - 1/4*(sqrt(-3) - 1)*(1/(a^6*d^5))^(1/6)*log(-1/2*((sqrt(-3)*a*d*x -
a*d*x)*(1/(a^6*d^5))^(1/6) - 2*(-a*x^2 + x^3)^(1/3))/x) + 1/2*(1/(a^6*d^5))^(1/6)*log((a*d*x*(1/(a^6*d^5))^(1/
6) + (-a*x^2 + x^3)^(1/3))/x) - 1/2*(1/(a^6*d^5))^(1/6)*log(-(a*d*x*(1/(a^6*d^5))^(1/6) - (-a*x^2 + x^3)^(1/3)
)/x)

Sympy [F]

\[ \int \frac {x^2}{\left (x^2 (-a+x)\right )^{2/3} \left (-a^2+2 a x+(-1+d) x^2\right )} \, dx=\int \frac {x^{2}}{\left (x^{2} \left (- a + x\right )\right )^{\frac {2}{3}} \left (- a^{2} + 2 a x + d x^{2} - x^{2}\right )}\, dx \]

[In]

integrate(x**2/(x**2*(-a+x))**(2/3)/(-a**2+2*a*x+(-1+d)*x**2),x)

[Out]

Integral(x**2/((x**2*(-a + x))**(2/3)*(-a**2 + 2*a*x + d*x**2 - x**2)), x)

Maxima [F]

\[ \int \frac {x^2}{\left (x^2 (-a+x)\right )^{2/3} \left (-a^2+2 a x+(-1+d) x^2\right )} \, dx=\int { \frac {x^{2}}{\left (-{\left (a - x\right )} x^{2}\right )^{\frac {2}{3}} {\left ({\left (d - 1\right )} x^{2} - a^{2} + 2 \, a x\right )}} \,d x } \]

[In]

integrate(x^2/(x^2*(-a+x))^(2/3)/(-a^2+2*a*x+(-1+d)*x^2),x, algorithm="maxima")

[Out]

integrate(x^2/((-(a - x)*x^2)^(2/3)*((d - 1)*x^2 - a^2 + 2*a*x)), x)

Giac [A] (verification not implemented)

none

Time = 0.30 (sec) , antiderivative size = 209, normalized size of antiderivative = 1.02 \[ \int \frac {x^2}{\left (x^2 (-a+x)\right )^{2/3} \left (-a^2+2 a x+(-1+d) x^2\right )} \, dx=-\frac {\sqrt {3} \log \left (\sqrt {3} \left (-d\right )^{\frac {1}{6}} {\left (-\frac {a}{x} + 1\right )}^{\frac {1}{3}} + {\left (-\frac {a}{x} + 1\right )}^{\frac {2}{3}} + \left (-d\right )^{\frac {1}{3}}\right )}{4 \, a \left (-d\right )^{\frac {5}{6}}} - \frac {\sqrt {3} \left (-d\right )^{\frac {1}{6}} \log \left (-\sqrt {3} \left (-d\right )^{\frac {1}{6}} {\left (-\frac {a}{x} + 1\right )}^{\frac {1}{3}} + {\left (-\frac {a}{x} + 1\right )}^{\frac {2}{3}} + \left (-d\right )^{\frac {1}{3}}\right )}{4 \, a d} - \frac {\arctan \left (\frac {\sqrt {3} \left (-d\right )^{\frac {1}{6}} + 2 \, {\left (-\frac {a}{x} + 1\right )}^{\frac {1}{3}}}{\left (-d\right )^{\frac {1}{6}}}\right )}{2 \, a \left (-d\right )^{\frac {5}{6}}} - \frac {\arctan \left (-\frac {\sqrt {3} \left (-d\right )^{\frac {1}{6}} - 2 \, {\left (-\frac {a}{x} + 1\right )}^{\frac {1}{3}}}{\left (-d\right )^{\frac {1}{6}}}\right )}{2 \, a \left (-d\right )^{\frac {5}{6}}} - \frac {\arctan \left (\frac {{\left (-\frac {a}{x} + 1\right )}^{\frac {1}{3}}}{\left (-d\right )^{\frac {1}{6}}}\right )}{a \left (-d\right )^{\frac {5}{6}}} \]

[In]

integrate(x^2/(x^2*(-a+x))^(2/3)/(-a^2+2*a*x+(-1+d)*x^2),x, algorithm="giac")

[Out]

-1/4*sqrt(3)*log(sqrt(3)*(-d)^(1/6)*(-a/x + 1)^(1/3) + (-a/x + 1)^(2/3) + (-d)^(1/3))/(a*(-d)^(5/6)) - 1/4*sqr
t(3)*(-d)^(1/6)*log(-sqrt(3)*(-d)^(1/6)*(-a/x + 1)^(1/3) + (-a/x + 1)^(2/3) + (-d)^(1/3))/(a*d) - 1/2*arctan((
sqrt(3)*(-d)^(1/6) + 2*(-a/x + 1)^(1/3))/(-d)^(1/6))/(a*(-d)^(5/6)) - 1/2*arctan(-(sqrt(3)*(-d)^(1/6) - 2*(-a/
x + 1)^(1/3))/(-d)^(1/6))/(a*(-d)^(5/6)) - arctan((-a/x + 1)^(1/3)/(-d)^(1/6))/(a*(-d)^(5/6))

Mupad [F(-1)]

Timed out. \[ \int \frac {x^2}{\left (x^2 (-a+x)\right )^{2/3} \left (-a^2+2 a x+(-1+d) x^2\right )} \, dx=\int \frac {x^2}{{\left (-x^2\,\left (a-x\right )\right )}^{2/3}\,\left (-a^2+2\,a\,x+\left (d-1\right )\,x^2\right )} \,d x \]

[In]

int(x^2/((-x^2*(a - x))^(2/3)*(2*a*x - a^2 + x^2*(d - 1))),x)

[Out]

int(x^2/((-x^2*(a - x))^(2/3)*(2*a*x - a^2 + x^2*(d - 1))), x)