\(\int \frac {1}{x^4 (1+x^4)^{5/4}} \, dx\) [215]

   Optimal result
   Rubi [A] (verified)
   Mathematica [A] (verified)
   Maple [A] (verified)
   Fricas [A] (verification not implemented)
   Sympy [B] (verification not implemented)
   Maxima [A] (verification not implemented)
   Giac [F]
   Mupad [B] (verification not implemented)

Optimal result

Integrand size = 13, antiderivative size = 23 \[ \int \frac {1}{x^4 \left (1+x^4\right )^{5/4}} \, dx=\frac {-1-4 x^4}{3 x^3 \sqrt [4]{1+x^4}} \]

[Out]

1/3*(-4*x^4-1)/x^3/(x^4+1)^(1/4)

Rubi [A] (verified)

Time = 0.00 (sec) , antiderivative size = 31, normalized size of antiderivative = 1.35, number of steps used = 2, number of rules used = 2, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.154, Rules used = {277, 197} \[ \int \frac {1}{x^4 \left (1+x^4\right )^{5/4}} \, dx=-\frac {4 x}{3 \sqrt [4]{x^4+1}}-\frac {1}{3 \sqrt [4]{x^4+1} x^3} \]

[In]

Int[1/(x^4*(1 + x^4)^(5/4)),x]

[Out]

-1/3*1/(x^3*(1 + x^4)^(1/4)) - (4*x)/(3*(1 + x^4)^(1/4))

Rule 197

Int[((a_) + (b_.)*(x_)^(n_))^(p_), x_Symbol] :> Simp[x*((a + b*x^n)^(p + 1)/a), x] /; FreeQ[{a, b, n, p}, x] &
& EqQ[1/n + p + 1, 0]

Rule 277

Int[(x_)^(m_)*((a_) + (b_.)*(x_)^(n_))^(p_), x_Symbol] :> Simp[x^(m + 1)*((a + b*x^n)^(p + 1)/(a*(m + 1))), x]
 - Dist[b*((m + n*(p + 1) + 1)/(a*(m + 1))), Int[x^(m + n)*(a + b*x^n)^p, x], x] /; FreeQ[{a, b, m, n, p}, x]
&& ILtQ[Simplify[(m + 1)/n + p + 1], 0] && NeQ[m, -1]

Rubi steps \begin{align*} \text {integral}& = -\frac {1}{3 x^3 \sqrt [4]{1+x^4}}-\frac {4}{3} \int \frac {1}{\left (1+x^4\right )^{5/4}} \, dx \\ & = -\frac {1}{3 x^3 \sqrt [4]{1+x^4}}-\frac {4 x}{3 \sqrt [4]{1+x^4}} \\ \end{align*}

Mathematica [A] (verified)

Time = 0.16 (sec) , antiderivative size = 23, normalized size of antiderivative = 1.00 \[ \int \frac {1}{x^4 \left (1+x^4\right )^{5/4}} \, dx=\frac {-1-4 x^4}{3 x^3 \sqrt [4]{1+x^4}} \]

[In]

Integrate[1/(x^4*(1 + x^4)^(5/4)),x]

[Out]

(-1 - 4*x^4)/(3*x^3*(1 + x^4)^(1/4))

Maple [A] (verified)

Time = 0.85 (sec) , antiderivative size = 20, normalized size of antiderivative = 0.87

method result size
gosper \(-\frac {4 x^{4}+1}{3 x^{3} \left (x^{4}+1\right )^{\frac {1}{4}}}\) \(20\)
trager \(-\frac {4 x^{4}+1}{3 x^{3} \left (x^{4}+1\right )^{\frac {1}{4}}}\) \(20\)
meijerg \(-\frac {4 x^{4}+1}{3 x^{3} \left (x^{4}+1\right )^{\frac {1}{4}}}\) \(20\)
risch \(-\frac {4 x^{4}+1}{3 x^{3} \left (x^{4}+1\right )^{\frac {1}{4}}}\) \(20\)
pseudoelliptic \(\frac {-4 x^{4}-1}{3 x^{3} \left (x^{4}+1\right )^{\frac {1}{4}}}\) \(20\)

[In]

int(1/x^4/(x^4+1)^(5/4),x,method=_RETURNVERBOSE)

[Out]

-1/3*(4*x^4+1)/x^3/(x^4+1)^(1/4)

Fricas [A] (verification not implemented)

none

Time = 0.24 (sec) , antiderivative size = 25, normalized size of antiderivative = 1.09 \[ \int \frac {1}{x^4 \left (1+x^4\right )^{5/4}} \, dx=-\frac {{\left (4 \, x^{4} + 1\right )} {\left (x^{4} + 1\right )}^{\frac {3}{4}}}{3 \, {\left (x^{7} + x^{3}\right )}} \]

[In]

integrate(1/x^4/(x^4+1)^(5/4),x, algorithm="fricas")

[Out]

-1/3*(4*x^4 + 1)*(x^4 + 1)^(3/4)/(x^7 + x^3)

Sympy [B] (verification not implemented)

Leaf count of result is larger than twice the leaf count of optimal. 75 vs. \(2 (22) = 44\).

Time = 0.46 (sec) , antiderivative size = 75, normalized size of antiderivative = 3.26 \[ \int \frac {1}{x^4 \left (1+x^4\right )^{5/4}} \, dx=\frac {4 x^{4} \left (x^{4} + 1\right )^{\frac {3}{4}} \Gamma \left (- \frac {3}{4}\right )}{16 x^{7} \Gamma \left (\frac {5}{4}\right ) + 16 x^{3} \Gamma \left (\frac {5}{4}\right )} + \frac {\left (x^{4} + 1\right )^{\frac {3}{4}} \Gamma \left (- \frac {3}{4}\right )}{16 x^{7} \Gamma \left (\frac {5}{4}\right ) + 16 x^{3} \Gamma \left (\frac {5}{4}\right )} \]

[In]

integrate(1/x**4/(x**4+1)**(5/4),x)

[Out]

4*x**4*(x**4 + 1)**(3/4)*gamma(-3/4)/(16*x**7*gamma(5/4) + 16*x**3*gamma(5/4)) + (x**4 + 1)**(3/4)*gamma(-3/4)
/(16*x**7*gamma(5/4) + 16*x**3*gamma(5/4))

Maxima [A] (verification not implemented)

none

Time = 0.19 (sec) , antiderivative size = 23, normalized size of antiderivative = 1.00 \[ \int \frac {1}{x^4 \left (1+x^4\right )^{5/4}} \, dx=-\frac {x}{{\left (x^{4} + 1\right )}^{\frac {1}{4}}} - \frac {{\left (x^{4} + 1\right )}^{\frac {3}{4}}}{3 \, x^{3}} \]

[In]

integrate(1/x^4/(x^4+1)^(5/4),x, algorithm="maxima")

[Out]

-x/(x^4 + 1)^(1/4) - 1/3*(x^4 + 1)^(3/4)/x^3

Giac [F]

\[ \int \frac {1}{x^4 \left (1+x^4\right )^{5/4}} \, dx=\int { \frac {1}{{\left (x^{4} + 1\right )}^{\frac {5}{4}} x^{4}} \,d x } \]

[In]

integrate(1/x^4/(x^4+1)^(5/4),x, algorithm="giac")

[Out]

integrate(1/((x^4 + 1)^(5/4)*x^4), x)

Mupad [B] (verification not implemented)

Time = 5.57 (sec) , antiderivative size = 19, normalized size of antiderivative = 0.83 \[ \int \frac {1}{x^4 \left (1+x^4\right )^{5/4}} \, dx=-\frac {4\,x^4+1}{3\,x^3\,{\left (x^4+1\right )}^{1/4}} \]

[In]

int(1/(x^4*(x^4 + 1)^(5/4)),x)

[Out]

-(4*x^4 + 1)/(3*x^3*(x^4 + 1)^(1/4))