\(\int \frac {3 k+(2-k^2) x-3 k x^2-k^2 x^3}{\sqrt [3]{(1-x^2) (1-k^2 x^2)} (1-d-(1+2 d) k x+(-1-d k^2) x^2+k x^3)} \, dx\) [2649]

   Optimal result
   Rubi [F]
   Mathematica [F]
   Maple [F]
   Fricas [F(-1)]
   Sympy [F(-1)]
   Maxima [F]
   Giac [F]
   Mupad [F(-1)]

Optimal result

Integrand size = 83, antiderivative size = 236 \[ \int \frac {3 k+\left (2-k^2\right ) x-3 k x^2-k^2 x^3}{\sqrt [3]{\left (1-x^2\right ) \left (1-k^2 x^2\right )} \left (1-d-(1+2 d) k x+\left (-1-d k^2\right ) x^2+k x^3\right )} \, dx=-\frac {\sqrt {3} \arctan \left (\frac {\sqrt {3} \sqrt [3]{1+\left (-1-k^2\right ) x^2+k^2 x^4}}{2 \sqrt [3]{d}+2 \sqrt [3]{d} k x+\sqrt [3]{1+\left (-1-k^2\right ) x^2+k^2 x^4}}\right )}{\sqrt [3]{d}}-\frac {\log \left (-\sqrt [3]{d}-\sqrt [3]{d} k x+\sqrt [3]{1+\left (-1-k^2\right ) x^2+k^2 x^4}\right )}{\sqrt [3]{d}}+\frac {\log \left (d^{2/3}+2 d^{2/3} k x+d^{2/3} k^2 x^2+\left (\sqrt [3]{d}+\sqrt [3]{d} k x\right ) \sqrt [3]{1+\left (-1-k^2\right ) x^2+k^2 x^4}+\left (1+\left (-1-k^2\right ) x^2+k^2 x^4\right )^{2/3}\right )}{2 \sqrt [3]{d}} \]

[Out]

-3^(1/2)*arctan(3^(1/2)*(1+(-k^2-1)*x^2+k^2*x^4)^(1/3)/(2*d^(1/3)+2*d^(1/3)*k*x+(1+(-k^2-1)*x^2+k^2*x^4)^(1/3)
))/d^(1/3)-ln(-d^(1/3)-d^(1/3)*k*x+(1+(-k^2-1)*x^2+k^2*x^4)^(1/3))/d^(1/3)+1/2*ln(d^(2/3)+2*d^(2/3)*k*x+d^(2/3
)*k^2*x^2+(d^(1/3)+d^(1/3)*k*x)*(1+(-k^2-1)*x^2+k^2*x^4)^(1/3)+(1+(-k^2-1)*x^2+k^2*x^4)^(2/3))/d^(1/3)

Rubi [F]

\[ \int \frac {3 k+\left (2-k^2\right ) x-3 k x^2-k^2 x^3}{\sqrt [3]{\left (1-x^2\right ) \left (1-k^2 x^2\right )} \left (1-d-(1+2 d) k x+\left (-1-d k^2\right ) x^2+k x^3\right )} \, dx=\int \frac {3 k+\left (2-k^2\right ) x-3 k x^2-k^2 x^3}{\sqrt [3]{\left (1-x^2\right ) \left (1-k^2 x^2\right )} \left (1-d-(1+2 d) k x+\left (-1-d k^2\right ) x^2+k x^3\right )} \, dx \]

[In]

Int[(3*k + (2 - k^2)*x - 3*k*x^2 - k^2*x^3)/(((1 - x^2)*(1 - k^2*x^2))^(1/3)*(1 - d - (1 + 2*d)*k*x + (-1 - d*
k^2)*x^2 + k*x^3)),x]

[Out]

-((k*x*(1 - x^2)^(1/3)*(1 - k^2*x^2)^(1/3)*AppellF1[1/2, 1/3, 1/3, 3/2, x^2, k^2*x^2])/(1 - (1 + k^2)*x^2 + k^
2*x^4)^(1/3)) + (4 - d)*k*Defer[Int][1/((1 - d - (1 + 2*d)*k*x - (1 + d*k^2)*x^2 + k*x^3)*(1 + (-1 - k^2)*x^2
+ k^2*x^4)^(1/3)), x] + 2*(1 - (1 + d)*k^2)*Defer[Int][x/((1 - d - (1 + 2*d)*k*x - (1 + d*k^2)*x^2 + k*x^3)*(1
 + (-1 - k^2)*x^2 + k^2*x^4)^(1/3)), x] - k*(4 + d*k^2)*Defer[Int][x^2/((1 - d - (1 + 2*d)*k*x - (1 + d*k^2)*x
^2 + k*x^3)*(1 + (-1 - k^2)*x^2 + k^2*x^4)^(1/3)), x]

Rubi steps \begin{align*} \text {integral}& = \int \frac {3 k+\left (2-k^2\right ) x-3 k x^2-k^2 x^3}{\left (1-d-(1+2 d) k x+\left (-1-d k^2\right ) x^2+k x^3\right ) \sqrt [3]{1+\left (-1-k^2\right ) x^2+k^2 x^4}} \, dx \\ & = \int \frac {3 k+\left (2-k^2\right ) x-3 k x^2-k^2 x^3}{\left (1-d-(1+2 d) k x-\left (1+d k^2\right ) x^2+k x^3\right ) \sqrt [3]{1+\left (-1-k^2\right ) x^2+k^2 x^4}} \, dx \\ & = \int \left (-\frac {k}{\sqrt [3]{1+\left (-1-k^2\right ) x^2+k^2 x^4}}+\frac {(4-d) k+2 \left (1-(1+d) k^2\right ) x-k \left (4+d k^2\right ) x^2}{\left (1-d-(1+2 d) k x-\left (1+d k^2\right ) x^2+k x^3\right ) \sqrt [3]{1+\left (-1-k^2\right ) x^2+k^2 x^4}}\right ) \, dx \\ & = -\left (k \int \frac {1}{\sqrt [3]{1+\left (-1-k^2\right ) x^2+k^2 x^4}} \, dx\right )+\int \frac {(4-d) k+2 \left (1-(1+d) k^2\right ) x-k \left (4+d k^2\right ) x^2}{\left (1-d-(1+2 d) k x-\left (1+d k^2\right ) x^2+k x^3\right ) \sqrt [3]{1+\left (-1-k^2\right ) x^2+k^2 x^4}} \, dx \\ & = -\frac {\left (k \sqrt [3]{1-x^2} \sqrt [3]{1-k^2 x^2}\right ) \int \frac {1}{\sqrt [3]{1-x^2} \sqrt [3]{1-k^2 x^2}} \, dx}{\sqrt [3]{1+\left (-1-k^2\right ) x^2+k^2 x^4}}+\int \left (\frac {(4-d) k}{\left (1-d-(1+2 d) k x-\left (1+d k^2\right ) x^2+k x^3\right ) \sqrt [3]{1+\left (-1-k^2\right ) x^2+k^2 x^4}}+\frac {2 \left (1-(1+d) k^2\right ) x}{\left (1-d-(1+2 d) k x-\left (1+d k^2\right ) x^2+k x^3\right ) \sqrt [3]{1+\left (-1-k^2\right ) x^2+k^2 x^4}}+\frac {k \left (-4-d k^2\right ) x^2}{\left (1-d-(1+2 d) k x-\left (1+d k^2\right ) x^2+k x^3\right ) \sqrt [3]{1+\left (-1-k^2\right ) x^2+k^2 x^4}}\right ) \, dx \\ & = -\frac {k x \sqrt [3]{1-x^2} \sqrt [3]{1-k^2 x^2} \operatorname {AppellF1}\left (\frac {1}{2},\frac {1}{3},\frac {1}{3},\frac {3}{2},x^2,k^2 x^2\right )}{\sqrt [3]{1-\left (1+k^2\right ) x^2+k^2 x^4}}+((4-d) k) \int \frac {1}{\left (1-d-(1+2 d) k x-\left (1+d k^2\right ) x^2+k x^3\right ) \sqrt [3]{1+\left (-1-k^2\right ) x^2+k^2 x^4}} \, dx-\left (k \left (4+d k^2\right )\right ) \int \frac {x^2}{\left (1-d-(1+2 d) k x-\left (1+d k^2\right ) x^2+k x^3\right ) \sqrt [3]{1+\left (-1-k^2\right ) x^2+k^2 x^4}} \, dx+\left (2 \left (1-(1+d) k^2\right )\right ) \int \frac {x}{\left (1-d-(1+2 d) k x-\left (1+d k^2\right ) x^2+k x^3\right ) \sqrt [3]{1+\left (-1-k^2\right ) x^2+k^2 x^4}} \, dx \\ \end{align*}

Mathematica [F]

\[ \int \frac {3 k+\left (2-k^2\right ) x-3 k x^2-k^2 x^3}{\sqrt [3]{\left (1-x^2\right ) \left (1-k^2 x^2\right )} \left (1-d-(1+2 d) k x+\left (-1-d k^2\right ) x^2+k x^3\right )} \, dx=\int \frac {3 k+\left (2-k^2\right ) x-3 k x^2-k^2 x^3}{\sqrt [3]{\left (1-x^2\right ) \left (1-k^2 x^2\right )} \left (1-d-(1+2 d) k x+\left (-1-d k^2\right ) x^2+k x^3\right )} \, dx \]

[In]

Integrate[(3*k + (2 - k^2)*x - 3*k*x^2 - k^2*x^3)/(((1 - x^2)*(1 - k^2*x^2))^(1/3)*(1 - d - (1 + 2*d)*k*x + (-
1 - d*k^2)*x^2 + k*x^3)),x]

[Out]

Integrate[(3*k + (2 - k^2)*x - 3*k*x^2 - k^2*x^3)/(((1 - x^2)*(1 - k^2*x^2))^(1/3)*(1 - d - (1 + 2*d)*k*x + (-
1 - d*k^2)*x^2 + k*x^3)), x]

Maple [F]

\[\int \frac {3 k +\left (-k^{2}+2\right ) x -3 k \,x^{2}-k^{2} x^{3}}{{\left (\left (-x^{2}+1\right ) \left (-k^{2} x^{2}+1\right )\right )}^{\frac {1}{3}} \left (1-d -\left (1+2 d \right ) k x +\left (-d \,k^{2}-1\right ) x^{2}+k \,x^{3}\right )}d x\]

[In]

int((3*k+(-k^2+2)*x-3*k*x^2-k^2*x^3)/((-x^2+1)*(-k^2*x^2+1))^(1/3)/(1-d-(1+2*d)*k*x+(-d*k^2-1)*x^2+k*x^3),x)

[Out]

int((3*k+(-k^2+2)*x-3*k*x^2-k^2*x^3)/((-x^2+1)*(-k^2*x^2+1))^(1/3)/(1-d-(1+2*d)*k*x+(-d*k^2-1)*x^2+k*x^3),x)

Fricas [F(-1)]

Timed out. \[ \int \frac {3 k+\left (2-k^2\right ) x-3 k x^2-k^2 x^3}{\sqrt [3]{\left (1-x^2\right ) \left (1-k^2 x^2\right )} \left (1-d-(1+2 d) k x+\left (-1-d k^2\right ) x^2+k x^3\right )} \, dx=\text {Timed out} \]

[In]

integrate((3*k+(-k^2+2)*x-3*k*x^2-k^2*x^3)/((-x^2+1)*(-k^2*x^2+1))^(1/3)/(1-d-(1+2*d)*k*x+(-d*k^2-1)*x^2+k*x^3
),x, algorithm="fricas")

[Out]

Timed out

Sympy [F(-1)]

Timed out. \[ \int \frac {3 k+\left (2-k^2\right ) x-3 k x^2-k^2 x^3}{\sqrt [3]{\left (1-x^2\right ) \left (1-k^2 x^2\right )} \left (1-d-(1+2 d) k x+\left (-1-d k^2\right ) x^2+k x^3\right )} \, dx=\text {Timed out} \]

[In]

integrate((3*k+(-k**2+2)*x-3*k*x**2-k**2*x**3)/((-x**2+1)*(-k**2*x**2+1))**(1/3)/(1-d-(1+2*d)*k*x+(-d*k**2-1)*
x**2+k*x**3),x)

[Out]

Timed out

Maxima [F]

\[ \int \frac {3 k+\left (2-k^2\right ) x-3 k x^2-k^2 x^3}{\sqrt [3]{\left (1-x^2\right ) \left (1-k^2 x^2\right )} \left (1-d-(1+2 d) k x+\left (-1-d k^2\right ) x^2+k x^3\right )} \, dx=\int { -\frac {k^{2} x^{3} + 3 \, k x^{2} + {\left (k^{2} - 2\right )} x - 3 \, k}{{\left (k x^{3} - {\left (2 \, d + 1\right )} k x - {\left (d k^{2} + 1\right )} x^{2} - d + 1\right )} \left ({\left (k^{2} x^{2} - 1\right )} {\left (x^{2} - 1\right )}\right )^{\frac {1}{3}}} \,d x } \]

[In]

integrate((3*k+(-k^2+2)*x-3*k*x^2-k^2*x^3)/((-x^2+1)*(-k^2*x^2+1))^(1/3)/(1-d-(1+2*d)*k*x+(-d*k^2-1)*x^2+k*x^3
),x, algorithm="maxima")

[Out]

-integrate((k^2*x^3 + 3*k*x^2 + (k^2 - 2)*x - 3*k)/((k*x^3 - (2*d + 1)*k*x - (d*k^2 + 1)*x^2 - d + 1)*((k^2*x^
2 - 1)*(x^2 - 1))^(1/3)), x)

Giac [F]

\[ \int \frac {3 k+\left (2-k^2\right ) x-3 k x^2-k^2 x^3}{\sqrt [3]{\left (1-x^2\right ) \left (1-k^2 x^2\right )} \left (1-d-(1+2 d) k x+\left (-1-d k^2\right ) x^2+k x^3\right )} \, dx=\int { -\frac {k^{2} x^{3} + 3 \, k x^{2} + {\left (k^{2} - 2\right )} x - 3 \, k}{{\left (k x^{3} - {\left (2 \, d + 1\right )} k x - {\left (d k^{2} + 1\right )} x^{2} - d + 1\right )} \left ({\left (k^{2} x^{2} - 1\right )} {\left (x^{2} - 1\right )}\right )^{\frac {1}{3}}} \,d x } \]

[In]

integrate((3*k+(-k^2+2)*x-3*k*x^2-k^2*x^3)/((-x^2+1)*(-k^2*x^2+1))^(1/3)/(1-d-(1+2*d)*k*x+(-d*k^2-1)*x^2+k*x^3
),x, algorithm="giac")

[Out]

integrate(-(k^2*x^3 + 3*k*x^2 + (k^2 - 2)*x - 3*k)/((k*x^3 - (2*d + 1)*k*x - (d*k^2 + 1)*x^2 - d + 1)*((k^2*x^
2 - 1)*(x^2 - 1))^(1/3)), x)

Mupad [F(-1)]

Timed out. \[ \int \frac {3 k+\left (2-k^2\right ) x-3 k x^2-k^2 x^3}{\sqrt [3]{\left (1-x^2\right ) \left (1-k^2 x^2\right )} \left (1-d-(1+2 d) k x+\left (-1-d k^2\right ) x^2+k x^3\right )} \, dx=\int \frac {x\,\left (k^2-2\right )-3\,k+k^2\,x^3+3\,k\,x^2}{{\left (\left (x^2-1\right )\,\left (k^2\,x^2-1\right )\right )}^{1/3}\,\left (-k\,x^3+\left (d\,k^2+1\right )\,x^2+k\,\left (2\,d+1\right )\,x+d-1\right )} \,d x \]

[In]

int((x*(k^2 - 2) - 3*k + k^2*x^3 + 3*k*x^2)/(((x^2 - 1)*(k^2*x^2 - 1))^(1/3)*(d + x^2*(d*k^2 + 1) - k*x^3 + k*
x*(2*d + 1) - 1)),x)

[Out]

int((x*(k^2 - 2) - 3*k + k^2*x^3 + 3*k*x^2)/(((x^2 - 1)*(k^2*x^2 - 1))^(1/3)*(d + x^2*(d*k^2 + 1) - k*x^3 + k*
x*(2*d + 1) - 1)), x)