\(\int \frac {b^8+a^8 x^8}{\sqrt {-b^4+a^4 x^4} (-b^8+a^8 x^8)} \, dx\) [2887]

   Optimal result
   Rubi [A] (verified)
   Mathematica [A] (verified)
   Maple [A] (verified)
   Fricas [A] (verification not implemented)
   Sympy [F]
   Maxima [F]
   Giac [F]
   Mupad [F(-1)]

Optimal result

Integrand size = 44, antiderivative size = 313 \[ \int \frac {b^8+a^8 x^8}{\sqrt {-b^4+a^4 x^4} \left (-b^8+a^8 x^8\right )} \, dx=-\frac {x}{2 \sqrt {-b^4+a^4 x^4}}-\frac {\left (\frac {1}{4}-\frac {i}{4}\right ) \arctan \left (\frac {(1+i) a b x}{i b^2+a^2 x^2+\sqrt {-b^4+a^4 x^4}}\right )}{a b}+\frac {\left (\frac {1}{8}-\frac {i}{8}\right ) \text {arctanh}\left (\frac {\frac {\left (\frac {1}{2}+\frac {i}{2}\right ) b}{\sqrt {3-2 \sqrt {2}} a}+\frac {\left (\frac {1}{2}-\frac {i}{2}\right ) a x^2}{\sqrt {3-2 \sqrt {2}} b}+\frac {\left (\frac {1}{2}-\frac {i}{2}\right ) \sqrt {-b^4+a^4 x^4}}{\sqrt {3-2 \sqrt {2}} a b}}{x}\right )}{a b}-\frac {\left (\frac {1}{8}-\frac {i}{8}\right ) \text {arctanh}\left (\frac {\frac {\left (\frac {1}{2}+\frac {i}{2}\right ) b}{\sqrt {3+2 \sqrt {2}} a}+\frac {\left (\frac {1}{2}-\frac {i}{2}\right ) a x^2}{\sqrt {3+2 \sqrt {2}} b}+\frac {\left (\frac {1}{2}-\frac {i}{2}\right ) \sqrt {-b^4+a^4 x^4}}{\sqrt {3+2 \sqrt {2}} a b}}{x}\right )}{a b} \]

[Out]

-1/2*x/(a^4*x^4-b^4)^(1/2)+(-1/4+1/4*I)*arctan((1+I)*a*b*x/(I*b^2+a^2*x^2+(a^4*x^4-b^4)^(1/2)))/a/b+(1/8-1/8*I
)*arctanh(((1/2+1/2*I)*b/(2^(1/2)-1)/a+(1/2-1/2*I)*a*x^2/(2^(1/2)-1)/b+(1/2-1/2*I)*(a^4*x^4-b^4)^(1/2)/(2^(1/2
)-1)/a/b)/x)/a/b+(-1/8+1/8*I)*arctanh(((1/2+1/2*I)*b/(1+2^(1/2))/a+(1/2-1/2*I)*a*x^2/(1+2^(1/2))/b+(1/2-1/2*I)
*(a^4*x^4-b^4)^(1/2)/(1+2^(1/2))/a/b)/x)/a/b

Rubi [A] (verified)

Time = 0.47 (sec) , antiderivative size = 135, normalized size of antiderivative = 0.43, number of steps used = 20, number of rules used = 11, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.250, Rules used = {6857, 230, 227, 1418, 425, 537, 418, 1225, 1713, 209, 212} \[ \int \frac {b^8+a^8 x^8}{\sqrt {-b^4+a^4 x^4} \left (-b^8+a^8 x^8\right )} \, dx=-\frac {\arctan \left (\frac {\sqrt {2} \sqrt [4]{-a^4} b x}{\sqrt {a^4 x^4-b^4}}\right )}{4 \sqrt {2} \sqrt [4]{-a^4} b}-\frac {\text {arctanh}\left (\frac {\sqrt {2} \sqrt [4]{-a^4} b x}{\sqrt {a^4 x^4-b^4}}\right )}{4 \sqrt {2} \sqrt [4]{-a^4} b}-\frac {x}{2 \sqrt {a^4 x^4-b^4}} \]

[In]

Int[(b^8 + a^8*x^8)/(Sqrt[-b^4 + a^4*x^4]*(-b^8 + a^8*x^8)),x]

[Out]

-1/2*x/Sqrt[-b^4 + a^4*x^4] - ArcTan[(Sqrt[2]*(-a^4)^(1/4)*b*x)/Sqrt[-b^4 + a^4*x^4]]/(4*Sqrt[2]*(-a^4)^(1/4)*
b) - ArcTanh[(Sqrt[2]*(-a^4)^(1/4)*b*x)/Sqrt[-b^4 + a^4*x^4]]/(4*Sqrt[2]*(-a^4)^(1/4)*b)

Rule 209

Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> Simp[(1/(Rt[a, 2]*Rt[b, 2]))*ArcTan[Rt[b, 2]*(x/Rt[a, 2])], x] /;
 FreeQ[{a, b}, x] && PosQ[a/b] && (GtQ[a, 0] || GtQ[b, 0])

Rule 212

Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> Simp[(1/(Rt[a, 2]*Rt[-b, 2]))*ArcTanh[Rt[-b, 2]*(x/Rt[a, 2])], x]
 /; FreeQ[{a, b}, x] && NegQ[a/b] && (GtQ[a, 0] || LtQ[b, 0])

Rule 227

Int[1/Sqrt[(a_) + (b_.)*(x_)^4], x_Symbol] :> Simp[EllipticF[ArcSin[Rt[-b, 4]*(x/Rt[a, 4])], -1]/(Rt[a, 4]*Rt[
-b, 4]), x] /; FreeQ[{a, b}, x] && NegQ[b/a] && GtQ[a, 0]

Rule 230

Int[1/Sqrt[(a_) + (b_.)*(x_)^4], x_Symbol] :> Dist[Sqrt[1 + b*(x^4/a)]/Sqrt[a + b*x^4], Int[1/Sqrt[1 + b*(x^4/
a)], x], x] /; FreeQ[{a, b}, x] && NegQ[b/a] &&  !GtQ[a, 0]

Rule 418

Int[1/(Sqrt[(a_) + (b_.)*(x_)^4]*((c_) + (d_.)*(x_)^4)), x_Symbol] :> Dist[1/(2*c), Int[1/(Sqrt[a + b*x^4]*(1
- Rt[-d/c, 2]*x^2)), x], x] + Dist[1/(2*c), Int[1/(Sqrt[a + b*x^4]*(1 + Rt[-d/c, 2]*x^2)), x], x] /; FreeQ[{a,
 b, c, d}, x] && NeQ[b*c - a*d, 0]

Rule 425

Int[((a_) + (b_.)*(x_)^(n_))^(p_)*((c_) + (d_.)*(x_)^(n_))^(q_), x_Symbol] :> Simp[(-b)*x*(a + b*x^n)^(p + 1)*
((c + d*x^n)^(q + 1)/(a*n*(p + 1)*(b*c - a*d))), x] + Dist[1/(a*n*(p + 1)*(b*c - a*d)), Int[(a + b*x^n)^(p + 1
)*(c + d*x^n)^q*Simp[b*c + n*(p + 1)*(b*c - a*d) + d*b*(n*(p + q + 2) + 1)*x^n, x], x], x] /; FreeQ[{a, b, c,
d, n, q}, x] && NeQ[b*c - a*d, 0] && LtQ[p, -1] &&  !( !IntegerQ[p] && IntegerQ[q] && LtQ[q, -1]) && IntBinomi
alQ[a, b, c, d, n, p, q, x]

Rule 537

Int[((e_) + (f_.)*(x_)^(n_))/(((a_) + (b_.)*(x_)^(n_))*Sqrt[(c_) + (d_.)*(x_)^(n_)]), x_Symbol] :> Dist[f/b, I
nt[1/Sqrt[c + d*x^n], x], x] + Dist[(b*e - a*f)/b, Int[1/((a + b*x^n)*Sqrt[c + d*x^n]), x], x] /; FreeQ[{a, b,
 c, d, e, f, n}, x]

Rule 1225

Int[1/(((d_) + (e_.)*(x_)^2)*Sqrt[(a_) + (c_.)*(x_)^4]), x_Symbol] :> Dist[1/(2*d), Int[1/Sqrt[a + c*x^4], x],
 x] + Dist[1/(2*d), Int[(d - e*x^2)/((d + e*x^2)*Sqrt[a + c*x^4]), x], x] /; FreeQ[{a, c, d, e}, x] && NeQ[c*d
^2 + a*e^2, 0] && EqQ[c*d^2 - a*e^2, 0]

Rule 1418

Int[((d_) + (e_.)*(x_)^(n_))^(q_.)*((a_) + (c_.)*(x_)^(n2_))^(p_.), x_Symbol] :> Int[(d + e*x^n)^(p + q)*(a/d
+ (c/e)*x^n)^p, x] /; FreeQ[{a, c, d, e, n, q}, x] && EqQ[n2, 2*n] && EqQ[c*d^2 + a*e^2, 0] && IntegerQ[p]

Rule 1713

Int[((A_) + (B_.)*(x_)^2)/(((d_) + (e_.)*(x_)^2)*Sqrt[(a_) + (c_.)*(x_)^4]), x_Symbol] :> Dist[A, Subst[Int[1/
(d + 2*a*e*x^2), x], x, x/Sqrt[a + c*x^4]], x] /; FreeQ[{a, c, d, e, A, B}, x] && NeQ[c*d^2 + a*e^2, 0] && EqQ
[c*d^2 - a*e^2, 0] && EqQ[B*d + A*e, 0]

Rule 6857

Int[(u_)/((a_) + (b_.)*(x_)^(n_)), x_Symbol] :> With[{v = RationalFunctionExpand[u/(a + b*x^n), x]}, Int[v, x]
 /; SumQ[v]] /; FreeQ[{a, b}, x] && IGtQ[n, 0]

Rubi steps \begin{align*} \text {integral}& = \int \left (\frac {1}{\sqrt {-b^4+a^4 x^4}}+\frac {2 b^8}{\sqrt {-b^4+a^4 x^4} \left (-b^8+a^8 x^8\right )}\right ) \, dx \\ & = \left (2 b^8\right ) \int \frac {1}{\sqrt {-b^4+a^4 x^4} \left (-b^8+a^8 x^8\right )} \, dx+\int \frac {1}{\sqrt {-b^4+a^4 x^4}} \, dx \\ & = \left (2 b^8\right ) \int \frac {1}{\left (-b^4+a^4 x^4\right )^{3/2} \left (b^4+a^4 x^4\right )} \, dx+\frac {\sqrt {1-\frac {a^4 x^4}{b^4}} \int \frac {1}{\sqrt {1-\frac {a^4 x^4}{b^4}}} \, dx}{\sqrt {-b^4+a^4 x^4}} \\ & = -\frac {x}{2 \sqrt {-b^4+a^4 x^4}}+\frac {b \sqrt {1-\frac {a^4 x^4}{b^4}} \operatorname {EllipticF}\left (\arcsin \left (\frac {a x}{b}\right ),-1\right )}{a \sqrt {-b^4+a^4 x^4}}+\frac {\int \frac {-3 a^4 b^4-a^8 x^4}{\sqrt {-b^4+a^4 x^4} \left (b^4+a^4 x^4\right )} \, dx}{2 a^4} \\ & = -\frac {x}{2 \sqrt {-b^4+a^4 x^4}}+\frac {b \sqrt {1-\frac {a^4 x^4}{b^4}} \operatorname {EllipticF}\left (\arcsin \left (\frac {a x}{b}\right ),-1\right )}{a \sqrt {-b^4+a^4 x^4}}-\frac {1}{2} \int \frac {1}{\sqrt {-b^4+a^4 x^4}} \, dx-b^4 \int \frac {1}{\sqrt {-b^4+a^4 x^4} \left (b^4+a^4 x^4\right )} \, dx \\ & = -\frac {x}{2 \sqrt {-b^4+a^4 x^4}}+\frac {b \sqrt {1-\frac {a^4 x^4}{b^4}} \operatorname {EllipticF}\left (\arcsin \left (\frac {a x}{b}\right ),-1\right )}{a \sqrt {-b^4+a^4 x^4}}-\frac {1}{2} \int \frac {1}{\left (1-\frac {\sqrt {-a^4} x^2}{b^2}\right ) \sqrt {-b^4+a^4 x^4}} \, dx-\frac {1}{2} \int \frac {1}{\left (1+\frac {\sqrt {-a^4} x^2}{b^2}\right ) \sqrt {-b^4+a^4 x^4}} \, dx-\frac {\sqrt {1-\frac {a^4 x^4}{b^4}} \int \frac {1}{\sqrt {1-\frac {a^4 x^4}{b^4}}} \, dx}{2 \sqrt {-b^4+a^4 x^4}} \\ & = -\frac {x}{2 \sqrt {-b^4+a^4 x^4}}+\frac {b \sqrt {1-\frac {a^4 x^4}{b^4}} \operatorname {EllipticF}\left (\arcsin \left (\frac {a x}{b}\right ),-1\right )}{2 a \sqrt {-b^4+a^4 x^4}}-2 \left (\frac {1}{4} \int \frac {1}{\sqrt {-b^4+a^4 x^4}} \, dx\right )-\frac {1}{4} \int \frac {1-\frac {\sqrt {-a^4} x^2}{b^2}}{\left (1+\frac {\sqrt {-a^4} x^2}{b^2}\right ) \sqrt {-b^4+a^4 x^4}} \, dx-\frac {1}{4} \int \frac {1+\frac {\sqrt {-a^4} x^2}{b^2}}{\left (1-\frac {\sqrt {-a^4} x^2}{b^2}\right ) \sqrt {-b^4+a^4 x^4}} \, dx \\ & = -\frac {x}{2 \sqrt {-b^4+a^4 x^4}}+\frac {b \sqrt {1-\frac {a^4 x^4}{b^4}} \operatorname {EllipticF}\left (\arcsin \left (\frac {a x}{b}\right ),-1\right )}{2 a \sqrt {-b^4+a^4 x^4}}-\frac {1}{4} \text {Subst}\left (\int \frac {1}{1-2 \sqrt {-a^4} b^2 x^2} \, dx,x,\frac {x}{\sqrt {-b^4+a^4 x^4}}\right )-\frac {1}{4} \text {Subst}\left (\int \frac {1}{1+2 \sqrt {-a^4} b^2 x^2} \, dx,x,\frac {x}{\sqrt {-b^4+a^4 x^4}}\right )-2 \frac {\sqrt {1-\frac {a^4 x^4}{b^4}} \int \frac {1}{\sqrt {1-\frac {a^4 x^4}{b^4}}} \, dx}{4 \sqrt {-b^4+a^4 x^4}} \\ & = -\frac {x}{2 \sqrt {-b^4+a^4 x^4}}-\frac {\arctan \left (\frac {\sqrt {2} \sqrt [4]{-a^4} b x}{\sqrt {-b^4+a^4 x^4}}\right )}{4 \sqrt {2} \sqrt [4]{-a^4} b}-\frac {\text {arctanh}\left (\frac {\sqrt {2} \sqrt [4]{-a^4} b x}{\sqrt {-b^4+a^4 x^4}}\right )}{4 \sqrt {2} \sqrt [4]{-a^4} b} \\ \end{align*}

Mathematica [A] (verified)

Time = 0.99 (sec) , antiderivative size = 245, normalized size of antiderivative = 0.78 \[ \int \frac {b^8+a^8 x^8}{\sqrt {-b^4+a^4 x^4} \left (-b^8+a^8 x^8\right )} \, dx=\frac {1}{8} \left (-\frac {4 x}{\sqrt {-b^4+a^4 x^4}}-\frac {(2-2 i) \arctan \left (\frac {(1+i) a b x}{i b^2+a^2 x^2+\sqrt {-b^4+a^4 x^4}}\right )}{a b}-\frac {(1+i) \arctan \left (\frac {i b^4+(1-i) a b^3 x-(1+i) a^3 b x^3-i a^4 x^4+\left (b^2-(1+i) a b x-i a^2 x^2\right ) \sqrt {-b^4+a^4 x^4}}{i b^4-(1-i) a b^3 x+(1+i) a^3 b x^3-i a^4 x^4+\left (b^2+(1+i) a b x-i a^2 x^2\right ) \sqrt {-b^4+a^4 x^4}}\right )}{a b}\right ) \]

[In]

Integrate[(b^8 + a^8*x^8)/(Sqrt[-b^4 + a^4*x^4]*(-b^8 + a^8*x^8)),x]

[Out]

((-4*x)/Sqrt[-b^4 + a^4*x^4] - ((2 - 2*I)*ArcTan[((1 + I)*a*b*x)/(I*b^2 + a^2*x^2 + Sqrt[-b^4 + a^4*x^4])])/(a
*b) - ((1 + I)*ArcTan[(I*b^4 + (1 - I)*a*b^3*x - (1 + I)*a^3*b*x^3 - I*a^4*x^4 + (b^2 - (1 + I)*a*b*x - I*a^2*
x^2)*Sqrt[-b^4 + a^4*x^4])/(I*b^4 - (1 - I)*a*b^3*x + (1 + I)*a^3*b*x^3 - I*a^4*x^4 + (b^2 + (1 + I)*a*b*x - I
*a^2*x^2)*Sqrt[-b^4 + a^4*x^4])])/(a*b))/8

Maple [A] (verified)

Time = 5.00 (sec) , antiderivative size = 226, normalized size of antiderivative = 0.72

method result size
elliptic \(\frac {\left (-\frac {\sqrt {2}\, x}{2 \sqrt {a^{4} x^{4}-b^{4}}}+\frac {\sqrt {2}\, \left (\ln \left (\frac {\frac {a^{4} x^{4}-b^{4}}{2 x^{2}}-\frac {\left (a^{4} b^{4}\right )^{\frac {1}{4}} \sqrt {a^{4} x^{4}-b^{4}}}{x}+\sqrt {a^{4} b^{4}}}{\frac {a^{4} x^{4}-b^{4}}{2 x^{2}}+\frac {\left (a^{4} b^{4}\right )^{\frac {1}{4}} \sqrt {a^{4} x^{4}-b^{4}}}{x}+\sqrt {a^{4} b^{4}}}\right )+2 \arctan \left (\frac {\sqrt {a^{4} x^{4}-b^{4}}}{\left (a^{4} b^{4}\right )^{\frac {1}{4}} x}+1\right )+2 \arctan \left (\frac {\sqrt {a^{4} x^{4}-b^{4}}}{\left (a^{4} b^{4}\right )^{\frac {1}{4}} x}-1\right )\right )}{16 \left (a^{4} b^{4}\right )^{\frac {1}{4}}}\right ) \sqrt {2}}{2}\) \(226\)
default \(-\frac {i a^{2} \left (\left (\sqrt {i a^{2} b^{2}}\, \sqrt {a^{4} x^{4}-b^{4}}\, x +\frac {\left (\ln \left (\frac {a^{2} \left (-2 i a^{2} b^{2} x +2 \sqrt {i a^{2} b^{2}}\, a^{2} x^{2}+2 i \sqrt {i a^{2} b^{2}}\, b^{2}+\sqrt {2}\, \sqrt {i a^{2} b^{2}}\, \sqrt {a^{4} x^{4}-b^{4}}\right )}{a^{2} x^{2}+i b^{2}-2 \sqrt {i a^{2} b^{2}}\, x}\right )+\ln \left (-\frac {2 a^{2} \left (-\frac {\sqrt {2}\, \sqrt {i a^{2} b^{2}}\, \sqrt {a^{4} x^{4}-b^{4}}}{2}+\left (a^{2} x^{2}+i b^{2}\right ) \sqrt {i a^{2} b^{2}}+i a^{2} b^{2} x \right )}{a^{2} x^{2}+i b^{2}+2 \sqrt {i a^{2} b^{2}}\, x}\right )+2 \ln \left (2\right )\right ) \left (a^{2} x^{2}+b^{2}\right ) \left (a x -b \right ) \sqrt {2}\, \left (a x +b \right )}{8}\right ) \sqrt {-i a^{2} b^{2}}+\frac {\left (a^{2} x^{2}+b^{2}\right ) \left (a x -b \right ) \left (\ln \left (\frac {\left (-2 i a^{2} b^{2} x +\sqrt {2}\, \sqrt {-i a^{2} b^{2}}\, \sqrt {a^{4} x^{4}-b^{4}}\right ) a^{2}}{a^{2} x^{2}+i b^{2}}\right )+\ln \left (2\right )\right ) \sqrt {2}\, \left (a x +b \right ) \sqrt {i a^{2} b^{2}}}{4}\right ) b^{2}}{\sqrt {i a^{2} b^{2}}\, \sqrt {-i a^{2} b^{2}}\, \left (-a x +i b \right ) \left (-2 \sqrt {i a^{2} b^{2}}+\left (1+i\right ) a b \right ) \left (a x -b \right ) \left (a x +b \right ) \left (a x +i b \right ) \left (2 \sqrt {i a^{2} b^{2}}+\left (1+i\right ) a b \right )}\) \(508\)
pseudoelliptic \(-\frac {i a^{2} \left (\left (\sqrt {i a^{2} b^{2}}\, \sqrt {a^{4} x^{4}-b^{4}}\, x +\frac {\left (\ln \left (\frac {a^{2} \left (-2 i a^{2} b^{2} x +2 \sqrt {i a^{2} b^{2}}\, a^{2} x^{2}+2 i \sqrt {i a^{2} b^{2}}\, b^{2}+\sqrt {2}\, \sqrt {i a^{2} b^{2}}\, \sqrt {a^{4} x^{4}-b^{4}}\right )}{a^{2} x^{2}+i b^{2}-2 \sqrt {i a^{2} b^{2}}\, x}\right )+\ln \left (-\frac {2 a^{2} \left (-\frac {\sqrt {2}\, \sqrt {i a^{2} b^{2}}\, \sqrt {a^{4} x^{4}-b^{4}}}{2}+\left (a^{2} x^{2}+i b^{2}\right ) \sqrt {i a^{2} b^{2}}+i a^{2} b^{2} x \right )}{a^{2} x^{2}+i b^{2}+2 \sqrt {i a^{2} b^{2}}\, x}\right )+2 \ln \left (2\right )\right ) \left (a^{2} x^{2}+b^{2}\right ) \left (a x -b \right ) \sqrt {2}\, \left (a x +b \right )}{8}\right ) \sqrt {-i a^{2} b^{2}}+\frac {\left (a^{2} x^{2}+b^{2}\right ) \left (a x -b \right ) \left (\ln \left (\frac {\left (-2 i a^{2} b^{2} x +\sqrt {2}\, \sqrt {-i a^{2} b^{2}}\, \sqrt {a^{4} x^{4}-b^{4}}\right ) a^{2}}{a^{2} x^{2}+i b^{2}}\right )+\ln \left (2\right )\right ) \sqrt {2}\, \left (a x +b \right ) \sqrt {i a^{2} b^{2}}}{4}\right ) b^{2}}{\sqrt {i a^{2} b^{2}}\, \sqrt {-i a^{2} b^{2}}\, \left (-a x +i b \right ) \left (-2 \sqrt {i a^{2} b^{2}}+\left (1+i\right ) a b \right ) \left (a x -b \right ) \left (a x +b \right ) \left (a x +i b \right ) \left (2 \sqrt {i a^{2} b^{2}}+\left (1+i\right ) a b \right )}\) \(508\)

[In]

int((a^8*x^8+b^8)/(a^4*x^4-b^4)^(1/2)/(a^8*x^8-b^8),x,method=_RETURNVERBOSE)

[Out]

1/2*(-1/2/(a^4*x^4-b^4)^(1/2)*2^(1/2)*x+1/16/(a^4*b^4)^(1/4)*2^(1/2)*(ln((1/2*(a^4*x^4-b^4)/x^2-(a^4*b^4)^(1/4
)*(a^4*x^4-b^4)^(1/2)/x+(a^4*b^4)^(1/2))/(1/2*(a^4*x^4-b^4)/x^2+(a^4*b^4)^(1/4)*(a^4*x^4-b^4)^(1/2)/x+(a^4*b^4
)^(1/2)))+2*arctan(1/(a^4*b^4)^(1/4)*(a^4*x^4-b^4)^(1/2)/x+1)+2*arctan(1/(a^4*b^4)^(1/4)*(a^4*x^4-b^4)^(1/2)/x
-1)))*2^(1/2)

Fricas [A] (verification not implemented)

none

Time = 0.50 (sec) , antiderivative size = 162, normalized size of antiderivative = 0.52 \[ \int \frac {b^8+a^8 x^8}{\sqrt {-b^4+a^4 x^4} \left (-b^8+a^8 x^8\right )} \, dx=-\frac {4 \, \sqrt {a^{4} x^{4} - b^{4}} a b x - 2 \, {\left (a^{4} x^{4} - b^{4}\right )} \arctan \left (\frac {\sqrt {a^{4} x^{4} - b^{4}} a x}{a^{2} b x^{2} + b^{3}}\right ) - {\left (a^{4} x^{4} - b^{4}\right )} \log \left (\frac {a^{4} x^{4} + 2 \, a^{2} b^{2} x^{2} - b^{4} - 2 \, \sqrt {a^{4} x^{4} - b^{4}} a b x}{a^{4} x^{4} + b^{4}}\right )}{8 \, {\left (a^{5} b x^{4} - a b^{5}\right )}} \]

[In]

integrate((a^8*x^8+b^8)/(a^4*x^4-b^4)^(1/2)/(a^8*x^8-b^8),x, algorithm="fricas")

[Out]

-1/8*(4*sqrt(a^4*x^4 - b^4)*a*b*x - 2*(a^4*x^4 - b^4)*arctan(sqrt(a^4*x^4 - b^4)*a*x/(a^2*b*x^2 + b^3)) - (a^4
*x^4 - b^4)*log((a^4*x^4 + 2*a^2*b^2*x^2 - b^4 - 2*sqrt(a^4*x^4 - b^4)*a*b*x)/(a^4*x^4 + b^4)))/(a^5*b*x^4 - a
*b^5)

Sympy [F]

\[ \int \frac {b^8+a^8 x^8}{\sqrt {-b^4+a^4 x^4} \left (-b^8+a^8 x^8\right )} \, dx=\int \frac {a^{8} x^{8} + b^{8}}{\sqrt {\left (a x - b\right ) \left (a x + b\right ) \left (a^{2} x^{2} + b^{2}\right )} \left (a x - b\right ) \left (a x + b\right ) \left (a^{2} x^{2} + b^{2}\right ) \left (a^{4} x^{4} + b^{4}\right )}\, dx \]

[In]

integrate((a**8*x**8+b**8)/(a**4*x**4-b**4)**(1/2)/(a**8*x**8-b**8),x)

[Out]

Integral((a**8*x**8 + b**8)/(sqrt((a*x - b)*(a*x + b)*(a**2*x**2 + b**2))*(a*x - b)*(a*x + b)*(a**2*x**2 + b**
2)*(a**4*x**4 + b**4)), x)

Maxima [F]

\[ \int \frac {b^8+a^8 x^8}{\sqrt {-b^4+a^4 x^4} \left (-b^8+a^8 x^8\right )} \, dx=\int { \frac {a^{8} x^{8} + b^{8}}{{\left (a^{8} x^{8} - b^{8}\right )} \sqrt {a^{4} x^{4} - b^{4}}} \,d x } \]

[In]

integrate((a^8*x^8+b^8)/(a^4*x^4-b^4)^(1/2)/(a^8*x^8-b^8),x, algorithm="maxima")

[Out]

integrate((a^8*x^8 + b^8)/((a^8*x^8 - b^8)*sqrt(a^4*x^4 - b^4)), x)

Giac [F]

\[ \int \frac {b^8+a^8 x^8}{\sqrt {-b^4+a^4 x^4} \left (-b^8+a^8 x^8\right )} \, dx=\int { \frac {a^{8} x^{8} + b^{8}}{{\left (a^{8} x^{8} - b^{8}\right )} \sqrt {a^{4} x^{4} - b^{4}}} \,d x } \]

[In]

integrate((a^8*x^8+b^8)/(a^4*x^4-b^4)^(1/2)/(a^8*x^8-b^8),x, algorithm="giac")

[Out]

integrate((a^8*x^8 + b^8)/((a^8*x^8 - b^8)*sqrt(a^4*x^4 - b^4)), x)

Mupad [F(-1)]

Timed out. \[ \int \frac {b^8+a^8 x^8}{\sqrt {-b^4+a^4 x^4} \left (-b^8+a^8 x^8\right )} \, dx=\int -\frac {a^8\,x^8+b^8}{\sqrt {a^4\,x^4-b^4}\,\left (b^8-a^8\,x^8\right )} \,d x \]

[In]

int(-(b^8 + a^8*x^8)/((a^4*x^4 - b^4)^(1/2)*(b^8 - a^8*x^8)),x)

[Out]

int(-(b^8 + a^8*x^8)/((a^4*x^4 - b^4)^(1/2)*(b^8 - a^8*x^8)), x)