\(\int \frac {(-2+x^6) (1-x^4+x^6)}{x^8 \sqrt [4]{1+x^6}} \, dx\) [336]

   Optimal result
   Rubi [A] (verified)
   Mathematica [A] (verified)
   Maple [A] (verified)
   Fricas [A] (verification not implemented)
   Sympy [C] (verification not implemented)
   Maxima [A] (verification not implemented)
   Giac [F]
   Mupad [B] (verification not implemented)

Optimal result

Integrand size = 28, antiderivative size = 28 \[ \int \frac {\left (-2+x^6\right ) \left (1-x^4+x^6\right )}{x^8 \sqrt [4]{1+x^6}} \, dx=\frac {2 \left (1+x^6\right )^{3/4} \left (3-7 x^4+3 x^6\right )}{21 x^7} \]

[Out]

2/21*(x^6+1)^(3/4)*(3*x^6-7*x^4+3)/x^7

Rubi [A] (verified)

Time = 0.06 (sec) , antiderivative size = 33, normalized size of antiderivative = 1.18, number of steps used = 6, number of rules used = 4, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.143, Rules used = {1847, 1598, 460, 1492} \[ \int \frac {\left (-2+x^6\right ) \left (1-x^4+x^6\right )}{x^8 \sqrt [4]{1+x^6}} \, dx=\frac {2 \left (x^6+1\right )^{7/4}}{7 x^7}-\frac {2 \left (x^6+1\right )^{3/4}}{3 x^3} \]

[In]

Int[((-2 + x^6)*(1 - x^4 + x^6))/(x^8*(1 + x^6)^(1/4)),x]

[Out]

(-2*(1 + x^6)^(3/4))/(3*x^3) + (2*(1 + x^6)^(7/4))/(7*x^7)

Rule 460

Int[((e_.)*(x_))^(m_.)*((a_) + (b_.)*(x_)^(n_))^(p_.)*((c_) + (d_.)*(x_)^(n_)), x_Symbol] :> Simp[c*(e*x)^(m +
 1)*((a + b*x^n)^(p + 1)/(a*e*(m + 1))), x] /; FreeQ[{a, b, c, d, e, m, n, p}, x] && NeQ[b*c - a*d, 0] && EqQ[
a*d*(m + 1) - b*c*(m + n*(p + 1) + 1), 0] && NeQ[m, -1]

Rule 1492

Int[((f_.)*(x_))^(m_.)*((d_) + (e_.)*(x_)^(n_))^(q_.)*((a_) + (b_.)*(x_)^(n_) + (c_.)*(x_)^(n2_))^(p_.), x_Sym
bol] :> Int[(f*x)^m*(d + e*x^n)^(q + p)*(a/d + (c/e)*x^n)^p, x] /; FreeQ[{a, b, c, d, e, f, m, n, q}, x] && Eq
Q[n2, 2*n] && NeQ[b^2 - 4*a*c, 0] && EqQ[c*d^2 - b*d*e + a*e^2, 0] && IntegerQ[p]

Rule 1598

Int[(u_.)*(x_)^(m_.)*((a_.)*(x_)^(p_.) + (b_.)*(x_)^(q_.))^(n_.), x_Symbol] :> Int[u*x^(m + n*p)*(a + b*x^(q -
 p))^n, x] /; FreeQ[{a, b, m, p, q}, x] && IntegerQ[n] && PosQ[q - p]

Rule 1847

Int[(Pq_)*((c_.)*(x_))^(m_.)*((a_) + (b_.)*(x_)^(n_))^(p_), x_Symbol] :> Module[{q = Expon[Pq, x], j, k}, Int[
Sum[((c*x)^(m + j)/c^j)*Sum[Coeff[Pq, x, j + k*(n/2)]*x^(k*(n/2)), {k, 0, 2*((q - j)/n) + 1}]*(a + b*x^n)^p, {
j, 0, n/2 - 1}], x]] /; FreeQ[{a, b, c, m, p}, x] && PolyQ[Pq, x] && IGtQ[n/2, 0] &&  !PolyQ[Pq, x^(n/2)]

Rubi steps \begin{align*} \text {integral}& = \int \left (\frac {2 x^3-x^9}{x^7 \sqrt [4]{1+x^6}}+\frac {-2-x^6+x^{12}}{x^8 \sqrt [4]{1+x^6}}\right ) \, dx \\ & = \int \frac {2 x^3-x^9}{x^7 \sqrt [4]{1+x^6}} \, dx+\int \frac {-2-x^6+x^{12}}{x^8 \sqrt [4]{1+x^6}} \, dx \\ & = \int \frac {2-x^6}{x^4 \sqrt [4]{1+x^6}} \, dx+\int \frac {\left (-2+x^6\right ) \left (1+x^6\right )^{3/4}}{x^8} \, dx \\ & = -\frac {2 \left (1+x^6\right )^{3/4}}{3 x^3}+\frac {2 \left (1+x^6\right )^{7/4}}{7 x^7} \\ \end{align*}

Mathematica [A] (verified)

Time = 1.91 (sec) , antiderivative size = 28, normalized size of antiderivative = 1.00 \[ \int \frac {\left (-2+x^6\right ) \left (1-x^4+x^6\right )}{x^8 \sqrt [4]{1+x^6}} \, dx=\frac {2 \left (1+x^6\right )^{3/4} \left (3-7 x^4+3 x^6\right )}{21 x^7} \]

[In]

Integrate[((-2 + x^6)*(1 - x^4 + x^6))/(x^8*(1 + x^6)^(1/4)),x]

[Out]

(2*(1 + x^6)^(3/4)*(3 - 7*x^4 + 3*x^6))/(21*x^7)

Maple [A] (verified)

Time = 0.92 (sec) , antiderivative size = 25, normalized size of antiderivative = 0.89

method result size
trager \(\frac {2 \left (x^{6}+1\right )^{\frac {3}{4}} \left (3 x^{6}-7 x^{4}+3\right )}{21 x^{7}}\) \(25\)
pseudoelliptic \(\frac {2 \left (x^{6}+1\right )^{\frac {3}{4}} \left (3 x^{6}-7 x^{4}+3\right )}{21 x^{7}}\) \(25\)
risch \(\frac {\frac {2}{7} x^{12}+\frac {4}{7} x^{6}+\frac {2}{7}-\frac {2}{3} x^{10}-\frac {2}{3} x^{4}}{x^{7} \left (x^{6}+1\right )^{\frac {1}{4}}}\) \(35\)
gosper \(\frac {2 \left (x^{2}+1\right ) \left (x^{4}-x^{2}+1\right ) \left (3 x^{6}-7 x^{4}+3\right )}{21 x^{7} \left (x^{6}+1\right )^{\frac {1}{4}}}\) \(40\)
meijerg \(\frac {2 \operatorname {hypergeom}\left (\left [-\frac {7}{6}, \frac {1}{4}\right ], \left [-\frac {1}{6}\right ], -x^{6}\right )}{7 x^{7}}+\frac {\operatorname {hypergeom}\left (\left [-\frac {1}{6}, \frac {1}{4}\right ], \left [\frac {5}{6}\right ], -x^{6}\right )}{x}-\frac {2 \operatorname {hypergeom}\left (\left [-\frac {1}{2}, \frac {1}{4}\right ], \left [\frac {1}{2}\right ], -x^{6}\right )}{3 x^{3}}+\frac {x^{5} \operatorname {hypergeom}\left (\left [\frac {1}{4}, \frac {5}{6}\right ], \left [\frac {11}{6}\right ], -x^{6}\right )}{5}-\frac {x^{3} \operatorname {hypergeom}\left (\left [\frac {1}{4}, \frac {1}{2}\right ], \left [\frac {3}{2}\right ], -x^{6}\right )}{3}\) \(81\)

[In]

int((x^6-2)*(x^6-x^4+1)/x^8/(x^6+1)^(1/4),x,method=_RETURNVERBOSE)

[Out]

2/21*(x^6+1)^(3/4)*(3*x^6-7*x^4+3)/x^7

Fricas [A] (verification not implemented)

none

Time = 0.26 (sec) , antiderivative size = 24, normalized size of antiderivative = 0.86 \[ \int \frac {\left (-2+x^6\right ) \left (1-x^4+x^6\right )}{x^8 \sqrt [4]{1+x^6}} \, dx=\frac {2 \, {\left (3 \, x^{6} - 7 \, x^{4} + 3\right )} {\left (x^{6} + 1\right )}^{\frac {3}{4}}}{21 \, x^{7}} \]

[In]

integrate((x^6-2)*(x^6-x^4+1)/x^8/(x^6+1)^(1/4),x, algorithm="fricas")

[Out]

2/21*(3*x^6 - 7*x^4 + 3)*(x^6 + 1)^(3/4)/x^7

Sympy [C] (verification not implemented)

Result contains complex when optimal does not.

Time = 2.15 (sec) , antiderivative size = 143, normalized size of antiderivative = 5.11 \[ \int \frac {\left (-2+x^6\right ) \left (1-x^4+x^6\right )}{x^8 \sqrt [4]{1+x^6}} \, dx=\frac {x^{5} \Gamma \left (\frac {5}{6}\right ) {{}_{2}F_{1}\left (\begin {matrix} \frac {1}{4}, \frac {5}{6} \\ \frac {11}{6} \end {matrix}\middle | {x^{6} e^{i \pi }} \right )}}{6 \Gamma \left (\frac {11}{6}\right )} - \frac {x^{3} {{}_{2}F_{1}\left (\begin {matrix} \frac {1}{4}, \frac {1}{2} \\ \frac {3}{2} \end {matrix}\middle | {x^{6} e^{i \pi }} \right )}}{3} - \frac {\Gamma \left (- \frac {1}{6}\right ) {{}_{2}F_{1}\left (\begin {matrix} - \frac {1}{6}, \frac {1}{4} \\ \frac {5}{6} \end {matrix}\middle | {x^{6} e^{i \pi }} \right )}}{6 x \Gamma \left (\frac {5}{6}\right )} - \frac {2 {{}_{2}F_{1}\left (\begin {matrix} - \frac {1}{2}, \frac {1}{4} \\ \frac {1}{2} \end {matrix}\middle | {x^{6} e^{i \pi }} \right )}}{3 x^{3}} - \frac {\Gamma \left (- \frac {7}{6}\right ) {{}_{2}F_{1}\left (\begin {matrix} - \frac {7}{6}, \frac {1}{4} \\ - \frac {1}{6} \end {matrix}\middle | {x^{6} e^{i \pi }} \right )}}{3 x^{7} \Gamma \left (- \frac {1}{6}\right )} \]

[In]

integrate((x**6-2)*(x**6-x**4+1)/x**8/(x**6+1)**(1/4),x)

[Out]

x**5*gamma(5/6)*hyper((1/4, 5/6), (11/6,), x**6*exp_polar(I*pi))/(6*gamma(11/6)) - x**3*hyper((1/4, 1/2), (3/2
,), x**6*exp_polar(I*pi))/3 - gamma(-1/6)*hyper((-1/6, 1/4), (5/6,), x**6*exp_polar(I*pi))/(6*x*gamma(5/6)) -
2*hyper((-1/2, 1/4), (1/2,), x**6*exp_polar(I*pi))/(3*x**3) - gamma(-7/6)*hyper((-7/6, 1/4), (-1/6,), x**6*exp
_polar(I*pi))/(3*x**7*gamma(-1/6))

Maxima [A] (verification not implemented)

none

Time = 0.32 (sec) , antiderivative size = 46, normalized size of antiderivative = 1.64 \[ \int \frac {\left (-2+x^6\right ) \left (1-x^4+x^6\right )}{x^8 \sqrt [4]{1+x^6}} \, dx=\frac {2 \, {\left (3 \, x^{12} - 7 \, x^{10} + 6 \, x^{6} - 7 \, x^{4} + 3\right )}}{21 \, {\left (x^{4} - x^{2} + 1\right )}^{\frac {1}{4}} {\left (x^{2} + 1\right )}^{\frac {1}{4}} x^{7}} \]

[In]

integrate((x^6-2)*(x^6-x^4+1)/x^8/(x^6+1)^(1/4),x, algorithm="maxima")

[Out]

2/21*(3*x^12 - 7*x^10 + 6*x^6 - 7*x^4 + 3)/((x^4 - x^2 + 1)^(1/4)*(x^2 + 1)^(1/4)*x^7)

Giac [F]

\[ \int \frac {\left (-2+x^6\right ) \left (1-x^4+x^6\right )}{x^8 \sqrt [4]{1+x^6}} \, dx=\int { \frac {{\left (x^{6} - x^{4} + 1\right )} {\left (x^{6} - 2\right )}}{{\left (x^{6} + 1\right )}^{\frac {1}{4}} x^{8}} \,d x } \]

[In]

integrate((x^6-2)*(x^6-x^4+1)/x^8/(x^6+1)^(1/4),x, algorithm="giac")

[Out]

integrate((x^6 - x^4 + 1)*(x^6 - 2)/((x^6 + 1)^(1/4)*x^8), x)

Mupad [B] (verification not implemented)

Time = 0.20 (sec) , antiderivative size = 39, normalized size of antiderivative = 1.39 \[ \int \frac {\left (-2+x^6\right ) \left (1-x^4+x^6\right )}{x^8 \sqrt [4]{1+x^6}} \, dx=\frac {6\,{\left (x^6+1\right )}^{3/4}-14\,x^4\,{\left (x^6+1\right )}^{3/4}+6\,x^6\,{\left (x^6+1\right )}^{3/4}}{21\,x^7} \]

[In]

int(((x^6 - 2)*(x^6 - x^4 + 1))/(x^8*(x^6 + 1)^(1/4)),x)

[Out]

(6*(x^6 + 1)^(3/4) - 14*x^4*(x^6 + 1)^(3/4) + 6*x^6*(x^6 + 1)^(3/4))/(21*x^7)