\(\int \frac {1}{x^6 \sqrt [3]{-x+x^3}} \, dx\) [358]

   Optimal result
   Rubi [A] (verified)
   Mathematica [A] (verified)
   Maple [A] (verified)
   Fricas [A] (verification not implemented)
   Sympy [F]
   Maxima [A] (verification not implemented)
   Giac [A] (verification not implemented)
   Mupad [B] (verification not implemented)

Optimal result

Integrand size = 15, antiderivative size = 30 \[ \int \frac {1}{x^6 \sqrt [3]{-x+x^3}} \, dx=\frac {3 \left (-x+x^3\right )^{2/3} \left (5+6 x^2+9 x^4\right )}{80 x^6} \]

[Out]

3/80*(x^3-x)^(2/3)*(9*x^4+6*x^2+5)/x^6

Rubi [A] (verified)

Time = 0.04 (sec) , antiderivative size = 55, normalized size of antiderivative = 1.83, number of steps used = 3, number of rules used = 2, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.133, Rules used = {2041, 2039} \[ \int \frac {1}{x^6 \sqrt [3]{-x+x^3}} \, dx=\frac {3 \left (x^3-x\right )^{2/3}}{16 x^6}+\frac {9 \left (x^3-x\right )^{2/3}}{40 x^4}+\frac {27 \left (x^3-x\right )^{2/3}}{80 x^2} \]

[In]

Int[1/(x^6*(-x + x^3)^(1/3)),x]

[Out]

(3*(-x + x^3)^(2/3))/(16*x^6) + (9*(-x + x^3)^(2/3))/(40*x^4) + (27*(-x + x^3)^(2/3))/(80*x^2)

Rule 2039

Int[((c_.)*(x_))^(m_.)*((a_.)*(x_)^(j_.) + (b_.)*(x_)^(n_.))^(p_), x_Symbol] :> Simp[(-c^(j - 1))*(c*x)^(m - j
 + 1)*((a*x^j + b*x^n)^(p + 1)/(a*(n - j)*(p + 1))), x] /; FreeQ[{a, b, c, j, m, n, p}, x] &&  !IntegerQ[p] &&
 NeQ[n, j] && EqQ[m + n*p + n - j + 1, 0] && (IntegerQ[j] || GtQ[c, 0])

Rule 2041

Int[((c_.)*(x_))^(m_.)*((a_.)*(x_)^(j_.) + (b_.)*(x_)^(n_.))^(p_), x_Symbol] :> Simp[c^(j - 1)*(c*x)^(m - j +
1)*((a*x^j + b*x^n)^(p + 1)/(a*(m + j*p + 1))), x] - Dist[b*((m + n*p + n - j + 1)/(a*c^(n - j)*(m + j*p + 1))
), Int[(c*x)^(m + n - j)*(a*x^j + b*x^n)^p, x], x] /; FreeQ[{a, b, c, j, m, n, p}, x] &&  !IntegerQ[p] && NeQ[
n, j] && ILtQ[Simplify[(m + n*p + n - j + 1)/(n - j)], 0] && NeQ[m + j*p + 1, 0] && (IntegersQ[j, n] || GtQ[c,
 0])

Rubi steps \begin{align*} \text {integral}& = \frac {3 \left (-x+x^3\right )^{2/3}}{16 x^6}+\frac {3}{4} \int \frac {1}{x^4 \sqrt [3]{-x+x^3}} \, dx \\ & = \frac {3 \left (-x+x^3\right )^{2/3}}{16 x^6}+\frac {9 \left (-x+x^3\right )^{2/3}}{40 x^4}+\frac {9}{20} \int \frac {1}{x^2 \sqrt [3]{-x+x^3}} \, dx \\ & = \frac {3 \left (-x+x^3\right )^{2/3}}{16 x^6}+\frac {9 \left (-x+x^3\right )^{2/3}}{40 x^4}+\frac {27 \left (-x+x^3\right )^{2/3}}{80 x^2} \\ \end{align*}

Mathematica [A] (verified)

Time = 4.94 (sec) , antiderivative size = 30, normalized size of antiderivative = 1.00 \[ \int \frac {1}{x^6 \sqrt [3]{-x+x^3}} \, dx=\frac {3 \left (x \left (-1+x^2\right )\right )^{2/3} \left (5+6 x^2+9 x^4\right )}{80 x^6} \]

[In]

Integrate[1/(x^6*(-x + x^3)^(1/3)),x]

[Out]

(3*(x*(-1 + x^2))^(2/3)*(5 + 6*x^2 + 9*x^4))/(80*x^6)

Maple [A] (verified)

Time = 0.84 (sec) , antiderivative size = 27, normalized size of antiderivative = 0.90

method result size
trager \(\frac {3 \left (x^{3}-x \right )^{\frac {2}{3}} \left (9 x^{4}+6 x^{2}+5\right )}{80 x^{6}}\) \(27\)
pseudoelliptic \(\frac {3 \left (x^{3}-x \right )^{\frac {2}{3}} \left (9 x^{4}+6 x^{2}+5\right )}{80 x^{6}}\) \(27\)
risch \(\frac {-\frac {3}{80} x^{2}-\frac {3}{16}-\frac {9}{80} x^{4}+\frac {27}{80} x^{6}}{x^{5} {\left (x \left (x^{2}-1\right )\right )}^{\frac {1}{3}}}\) \(32\)
gosper \(\frac {3 \left (1+x \right ) \left (x -1\right ) \left (9 x^{4}+6 x^{2}+5\right )}{80 x^{5} \left (x^{3}-x \right )^{\frac {1}{3}}}\) \(33\)
meijerg \(-\frac {3 {\left (-\operatorname {signum}\left (x^{2}-1\right )\right )}^{\frac {1}{3}} \left (\frac {9}{5} x^{4}+\frac {6}{5} x^{2}+1\right ) \left (-x^{2}+1\right )^{\frac {2}{3}}}{16 \operatorname {signum}\left (x^{2}-1\right )^{\frac {1}{3}} x^{\frac {16}{3}}}\) \(45\)

[In]

int(1/x^6/(x^3-x)^(1/3),x,method=_RETURNVERBOSE)

[Out]

3/80*(x^3-x)^(2/3)*(9*x^4+6*x^2+5)/x^6

Fricas [A] (verification not implemented)

none

Time = 0.25 (sec) , antiderivative size = 26, normalized size of antiderivative = 0.87 \[ \int \frac {1}{x^6 \sqrt [3]{-x+x^3}} \, dx=\frac {3 \, {\left (9 \, x^{4} + 6 \, x^{2} + 5\right )} {\left (x^{3} - x\right )}^{\frac {2}{3}}}{80 \, x^{6}} \]

[In]

integrate(1/x^6/(x^3-x)^(1/3),x, algorithm="fricas")

[Out]

3/80*(9*x^4 + 6*x^2 + 5)*(x^3 - x)^(2/3)/x^6

Sympy [F]

\[ \int \frac {1}{x^6 \sqrt [3]{-x+x^3}} \, dx=\int \frac {1}{x^{6} \sqrt [3]{x \left (x - 1\right ) \left (x + 1\right )}}\, dx \]

[In]

integrate(1/x**6/(x**3-x)**(1/3),x)

[Out]

Integral(1/(x**6*(x*(x - 1)*(x + 1))**(1/3)), x)

Maxima [A] (verification not implemented)

none

Time = 0.19 (sec) , antiderivative size = 34, normalized size of antiderivative = 1.13 \[ \int \frac {1}{x^6 \sqrt [3]{-x+x^3}} \, dx=\frac {3 \, {\left (9 \, x^{7} - 3 \, x^{5} - x^{3} - 5 \, x\right )}}{80 \, {\left (x + 1\right )}^{\frac {1}{3}} {\left (x - 1\right )}^{\frac {1}{3}} x^{\frac {19}{3}}} \]

[In]

integrate(1/x^6/(x^3-x)^(1/3),x, algorithm="maxima")

[Out]

3/80*(9*x^7 - 3*x^5 - x^3 - 5*x)/((x + 1)^(1/3)*(x - 1)^(1/3)*x^(19/3))

Giac [A] (verification not implemented)

none

Time = 0.27 (sec) , antiderivative size = 41, normalized size of antiderivative = 1.37 \[ \int \frac {1}{x^6 \sqrt [3]{-x+x^3}} \, dx=\frac {3}{16} \, {\left (\frac {1}{x^{2}} - 1\right )}^{2} {\left (-\frac {1}{x^{2}} + 1\right )}^{\frac {2}{3}} - \frac {3}{5} \, {\left (-\frac {1}{x^{2}} + 1\right )}^{\frac {5}{3}} + \frac {3}{4} \, {\left (-\frac {1}{x^{2}} + 1\right )}^{\frac {2}{3}} \]

[In]

integrate(1/x^6/(x^3-x)^(1/3),x, algorithm="giac")

[Out]

3/16*(1/x^2 - 1)^2*(-1/x^2 + 1)^(2/3) - 3/5*(-1/x^2 + 1)^(5/3) + 3/4*(-1/x^2 + 1)^(2/3)

Mupad [B] (verification not implemented)

Time = 5.27 (sec) , antiderivative size = 26, normalized size of antiderivative = 0.87 \[ \int \frac {1}{x^6 \sqrt [3]{-x+x^3}} \, dx=\frac {3\,{\left (x^3-x\right )}^{2/3}\,\left (9\,x^4+6\,x^2+5\right )}{80\,x^6} \]

[In]

int(1/(x^6*(x^3 - x)^(1/3)),x)

[Out]

(3*(x^3 - x)^(2/3)*(6*x^2 + 9*x^4 + 5))/(80*x^6)