\(\int x \sqrt [3]{-1+x^2} \, dx\) [7]

   Optimal result
   Rubi [A] (verified)
   Mathematica [A] (verified)
   Maple [A] (verified)
   Fricas [A] (verification not implemented)
   Sympy [B] (verification not implemented)
   Maxima [A] (verification not implemented)
   Giac [A] (verification not implemented)
   Mupad [B] (verification not implemented)

Optimal result

Integrand size = 11, antiderivative size = 13 \[ \int x \sqrt [3]{-1+x^2} \, dx=\frac {3}{8} \left (-1+x^2\right )^{4/3} \]

[Out]

3/8*(x^2-1)^(4/3)

Rubi [A] (verified)

Time = 0.00 (sec) , antiderivative size = 13, normalized size of antiderivative = 1.00, number of steps used = 1, number of rules used = 1, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.091, Rules used = {267} \[ \int x \sqrt [3]{-1+x^2} \, dx=\frac {3}{8} \left (x^2-1\right )^{4/3} \]

[In]

Int[x*(-1 + x^2)^(1/3),x]

[Out]

(3*(-1 + x^2)^(4/3))/8

Rule 267

Int[(x_)^(m_.)*((a_) + (b_.)*(x_)^(n_))^(p_), x_Symbol] :> Simp[(a + b*x^n)^(p + 1)/(b*n*(p + 1)), x] /; FreeQ
[{a, b, m, n, p}, x] && EqQ[m, n - 1] && NeQ[p, -1]

Rubi steps \begin{align*} \text {integral}& = \frac {3}{8} \left (-1+x^2\right )^{4/3} \\ \end{align*}

Mathematica [A] (verified)

Time = 0.00 (sec) , antiderivative size = 13, normalized size of antiderivative = 1.00 \[ \int x \sqrt [3]{-1+x^2} \, dx=\frac {3}{8} \left (-1+x^2\right )^{4/3} \]

[In]

Integrate[x*(-1 + x^2)^(1/3),x]

[Out]

(3*(-1 + x^2)^(4/3))/8

Maple [A] (verified)

Time = 0.77 (sec) , antiderivative size = 10, normalized size of antiderivative = 0.77

method result size
derivativedivides \(\frac {3 \left (x^{2}-1\right )^{\frac {4}{3}}}{8}\) \(10\)
default \(\frac {3 \left (x^{2}-1\right )^{\frac {4}{3}}}{8}\) \(10\)
risch \(\frac {3 \left (x^{2}-1\right )^{\frac {4}{3}}}{8}\) \(10\)
pseudoelliptic \(\frac {3 \left (x^{2}-1\right )^{\frac {4}{3}}}{8}\) \(10\)
gosper \(\frac {3 \left (x -1\right ) \left (1+x \right ) \left (x^{2}-1\right )^{\frac {1}{3}}}{8}\) \(16\)
trager \(\left (\frac {3 x^{2}}{8}-\frac {3}{8}\right ) \left (x^{2}-1\right )^{\frac {1}{3}}\) \(16\)
meijerg \(\frac {\operatorname {signum}\left (x^{2}-1\right )^{\frac {1}{3}} x^{2} \operatorname {hypergeom}\left (\left [-\frac {1}{3}, 1\right ], \left [2\right ], x^{2}\right )}{2 {\left (-\operatorname {signum}\left (x^{2}-1\right )\right )}^{\frac {1}{3}}}\) \(33\)

[In]

int(x*(x^2-1)^(1/3),x,method=_RETURNVERBOSE)

[Out]

3/8*(x^2-1)^(4/3)

Fricas [A] (verification not implemented)

none

Time = 0.24 (sec) , antiderivative size = 9, normalized size of antiderivative = 0.69 \[ \int x \sqrt [3]{-1+x^2} \, dx=\frac {3}{8} \, {\left (x^{2} - 1\right )}^{\frac {4}{3}} \]

[In]

integrate(x*(x^2-1)^(1/3),x, algorithm="fricas")

[Out]

3/8*(x^2 - 1)^(4/3)

Sympy [B] (verification not implemented)

Leaf count of result is larger than twice the leaf count of optimal. 26 vs. \(2 (10) = 20\).

Time = 0.06 (sec) , antiderivative size = 26, normalized size of antiderivative = 2.00 \[ \int x \sqrt [3]{-1+x^2} \, dx=\frac {3 x^{2} \sqrt [3]{x^{2} - 1}}{8} - \frac {3 \sqrt [3]{x^{2} - 1}}{8} \]

[In]

integrate(x*(x**2-1)**(1/3),x)

[Out]

3*x**2*(x**2 - 1)**(1/3)/8 - 3*(x**2 - 1)**(1/3)/8

Maxima [A] (verification not implemented)

none

Time = 0.17 (sec) , antiderivative size = 9, normalized size of antiderivative = 0.69 \[ \int x \sqrt [3]{-1+x^2} \, dx=\frac {3}{8} \, {\left (x^{2} - 1\right )}^{\frac {4}{3}} \]

[In]

integrate(x*(x^2-1)^(1/3),x, algorithm="maxima")

[Out]

3/8*(x^2 - 1)^(4/3)

Giac [A] (verification not implemented)

none

Time = 0.28 (sec) , antiderivative size = 9, normalized size of antiderivative = 0.69 \[ \int x \sqrt [3]{-1+x^2} \, dx=\frac {3}{8} \, {\left (x^{2} - 1\right )}^{\frac {4}{3}} \]

[In]

integrate(x*(x^2-1)^(1/3),x, algorithm="giac")

[Out]

3/8*(x^2 - 1)^(4/3)

Mupad [B] (verification not implemented)

Time = 5.02 (sec) , antiderivative size = 9, normalized size of antiderivative = 0.69 \[ \int x \sqrt [3]{-1+x^2} \, dx=\frac {3\,{\left (x^2-1\right )}^{4/3}}{8} \]

[In]

int(x*(x^2 - 1)^(1/3),x)

[Out]

(3*(x^2 - 1)^(4/3))/8