\(\int x^3 \sqrt [3]{1+x^4} \, dx\) [34]

   Optimal result
   Rubi [A] (verified)
   Mathematica [A] (verified)
   Maple [A] (verified)
   Fricas [A] (verification not implemented)
   Sympy [B] (verification not implemented)
   Maxima [A] (verification not implemented)
   Giac [A] (verification not implemented)
   Mupad [B] (verification not implemented)

Optimal result

Integrand size = 13, antiderivative size = 13 \[ \int x^3 \sqrt [3]{1+x^4} \, dx=\frac {3}{16} \left (1+x^4\right )^{4/3} \]

[Out]

3/16*(x^4+1)^(4/3)

Rubi [A] (verified)

Time = 0.00 (sec) , antiderivative size = 13, normalized size of antiderivative = 1.00, number of steps used = 1, number of rules used = 1, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.077, Rules used = {267} \[ \int x^3 \sqrt [3]{1+x^4} \, dx=\frac {3}{16} \left (x^4+1\right )^{4/3} \]

[In]

Int[x^3*(1 + x^4)^(1/3),x]

[Out]

(3*(1 + x^4)^(4/3))/16

Rule 267

Int[(x_)^(m_.)*((a_) + (b_.)*(x_)^(n_))^(p_), x_Symbol] :> Simp[(a + b*x^n)^(p + 1)/(b*n*(p + 1)), x] /; FreeQ
[{a, b, m, n, p}, x] && EqQ[m, n - 1] && NeQ[p, -1]

Rubi steps \begin{align*} \text {integral}& = \frac {3}{16} \left (1+x^4\right )^{4/3} \\ \end{align*}

Mathematica [A] (verified)

Time = 0.01 (sec) , antiderivative size = 13, normalized size of antiderivative = 1.00 \[ \int x^3 \sqrt [3]{1+x^4} \, dx=\frac {3}{16} \left (1+x^4\right )^{4/3} \]

[In]

Integrate[x^3*(1 + x^4)^(1/3),x]

[Out]

(3*(1 + x^4)^(4/3))/16

Maple [A] (verified)

Time = 0.77 (sec) , antiderivative size = 10, normalized size of antiderivative = 0.77

method result size
gosper \(\frac {3 \left (x^{4}+1\right )^{\frac {4}{3}}}{16}\) \(10\)
derivativedivides \(\frac {3 \left (x^{4}+1\right )^{\frac {4}{3}}}{16}\) \(10\)
default \(\frac {3 \left (x^{4}+1\right )^{\frac {4}{3}}}{16}\) \(10\)
risch \(\frac {3 \left (x^{4}+1\right )^{\frac {4}{3}}}{16}\) \(10\)
pseudoelliptic \(\frac {3 \left (x^{4}+1\right )^{\frac {4}{3}}}{16}\) \(10\)
trager \(\left (\frac {3}{16}+\frac {3 x^{4}}{16}\right ) \left (x^{4}+1\right )^{\frac {1}{3}}\) \(16\)
meijerg \(\frac {x^{4} \operatorname {hypergeom}\left (\left [-\frac {1}{3}, 1\right ], \left [2\right ], -x^{4}\right )}{4}\) \(17\)

[In]

int(x^3*(x^4+1)^(1/3),x,method=_RETURNVERBOSE)

[Out]

3/16*(x^4+1)^(4/3)

Fricas [A] (verification not implemented)

none

Time = 0.24 (sec) , antiderivative size = 9, normalized size of antiderivative = 0.69 \[ \int x^3 \sqrt [3]{1+x^4} \, dx=\frac {3}{16} \, {\left (x^{4} + 1\right )}^{\frac {4}{3}} \]

[In]

integrate(x^3*(x^4+1)^(1/3),x, algorithm="fricas")

[Out]

3/16*(x^4 + 1)^(4/3)

Sympy [B] (verification not implemented)

Leaf count of result is larger than twice the leaf count of optimal. 26 vs. \(2 (10) = 20\).

Time = 0.07 (sec) , antiderivative size = 26, normalized size of antiderivative = 2.00 \[ \int x^3 \sqrt [3]{1+x^4} \, dx=\frac {3 x^{4} \sqrt [3]{x^{4} + 1}}{16} + \frac {3 \sqrt [3]{x^{4} + 1}}{16} \]

[In]

integrate(x**3*(x**4+1)**(1/3),x)

[Out]

3*x**4*(x**4 + 1)**(1/3)/16 + 3*(x**4 + 1)**(1/3)/16

Maxima [A] (verification not implemented)

none

Time = 0.18 (sec) , antiderivative size = 9, normalized size of antiderivative = 0.69 \[ \int x^3 \sqrt [3]{1+x^4} \, dx=\frac {3}{16} \, {\left (x^{4} + 1\right )}^{\frac {4}{3}} \]

[In]

integrate(x^3*(x^4+1)^(1/3),x, algorithm="maxima")

[Out]

3/16*(x^4 + 1)^(4/3)

Giac [A] (verification not implemented)

none

Time = 0.28 (sec) , antiderivative size = 9, normalized size of antiderivative = 0.69 \[ \int x^3 \sqrt [3]{1+x^4} \, dx=\frac {3}{16} \, {\left (x^{4} + 1\right )}^{\frac {4}{3}} \]

[In]

integrate(x^3*(x^4+1)^(1/3),x, algorithm="giac")

[Out]

3/16*(x^4 + 1)^(4/3)

Mupad [B] (verification not implemented)

Time = 5.09 (sec) , antiderivative size = 9, normalized size of antiderivative = 0.69 \[ \int x^3 \sqrt [3]{1+x^4} \, dx=\frac {3\,{\left (x^4+1\right )}^{4/3}}{16} \]

[In]

int(x^3*(x^4 + 1)^(1/3),x)

[Out]

(3*(x^4 + 1)^(4/3))/16