\(\int \frac {-7+x+7 x^2}{(1+x^2) \sqrt {-x+x^3}} \, dx\) [747]

   Optimal result
   Rubi [C] (verified)
   Mathematica [C] (verified)
   Maple [A] (verified)
   Fricas [A] (verification not implemented)
   Sympy [F]
   Maxima [F]
   Giac [F]
   Mupad [B] (verification not implemented)

Optimal result

Integrand size = 27, antiderivative size = 58 \[ \int \frac {-7+x+7 x^2}{\left (1+x^2\right ) \sqrt {-x+x^3}} \, dx=-\frac {15}{4} \arctan \left (\frac {2 \sqrt {-x+x^3}}{-1-2 x+x^2}\right )-\frac {13}{4} \text {arctanh}\left (\frac {-\frac {1}{2}+x+\frac {x^2}{2}}{\sqrt {-x+x^3}}\right ) \]

[Out]

-15/4*arctan(2*(x^3-x)^(1/2)/(x^2-2*x-1))-13/4*arctanh((-1/2+x+1/2*x^2)/(x^3-x)^(1/2))

Rubi [C] (verified)

Result contains higher order function than in optimal. Order 4 vs. order 3 in optimal.

Time = 0.46 (sec) , antiderivative size = 183, normalized size of antiderivative = 3.16, number of steps used = 13, number of rules used = 7, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.259, Rules used = {2081, 6857, 335, 228, 947, 174, 551} \[ \int \frac {-7+x+7 x^2}{\left (1+x^2\right ) \sqrt {-x+x^3}} \, dx=\frac {7 \sqrt {2} \sqrt {x-1} \sqrt {x} \sqrt {x+1} \operatorname {EllipticF}\left (\arcsin \left (\frac {\sqrt {2} \sqrt {x}}{\sqrt {x-1}}\right ),\frac {1}{2}\right )}{\sqrt {x^3-x}}+\frac {\left (\frac {13}{2}+\frac {15 i}{2}\right ) \sqrt {x} \sqrt {1-x^2} \operatorname {EllipticPi}\left (\frac {1}{2}-\frac {i}{2},\arcsin \left (\sqrt {1-x}\right ),\frac {1}{2}\right )}{\sqrt {2} \sqrt {x^3-x}}+\frac {\left (\frac {13}{2}-\frac {15 i}{2}\right ) \sqrt {x} \sqrt {1-x^2} \operatorname {EllipticPi}\left (\frac {1}{2}+\frac {i}{2},\arcsin \left (\sqrt {1-x}\right ),\frac {1}{2}\right )}{\sqrt {2} \sqrt {x^3-x}} \]

[In]

Int[(-7 + x + 7*x^2)/((1 + x^2)*Sqrt[-x + x^3]),x]

[Out]

(7*Sqrt[2]*Sqrt[-1 + x]*Sqrt[x]*Sqrt[1 + x]*EllipticF[ArcSin[(Sqrt[2]*Sqrt[x])/Sqrt[-1 + x]], 1/2])/Sqrt[-x +
x^3] + ((13/2 + (15*I)/2)*Sqrt[x]*Sqrt[1 - x^2]*EllipticPi[1/2 - I/2, ArcSin[Sqrt[1 - x]], 1/2])/(Sqrt[2]*Sqrt
[-x + x^3]) + ((13/2 - (15*I)/2)*Sqrt[x]*Sqrt[1 - x^2]*EllipticPi[1/2 + I/2, ArcSin[Sqrt[1 - x]], 1/2])/(Sqrt[
2]*Sqrt[-x + x^3])

Rule 174

Int[1/(((a_.) + (b_.)*(x_))*Sqrt[(c_.) + (d_.)*(x_)]*Sqrt[(e_.) + (f_.)*(x_)]*Sqrt[(g_.) + (h_.)*(x_)]), x_Sym
bol] :> Dist[-2, Subst[Int[1/(Simp[b*c - a*d - b*x^2, x]*Sqrt[Simp[(d*e - c*f)/d + f*(x^2/d), x]]*Sqrt[Simp[(d
*g - c*h)/d + h*(x^2/d), x]]), x], x, Sqrt[c + d*x]], x] /; FreeQ[{a, b, c, d, e, f, g, h}, x] && GtQ[(d*e - c
*f)/d, 0]

Rule 228

Int[1/Sqrt[(a_) + (b_.)*(x_)^4], x_Symbol] :> With[{q = Rt[(-a)*b, 2]}, Simp[Sqrt[-a + q*x^2]*(Sqrt[(a + q*x^2
)/q]/(Sqrt[2]*Sqrt[-a]*Sqrt[a + b*x^4]))*EllipticF[ArcSin[x/Sqrt[(a + q*x^2)/(2*q)]], 1/2], x] /; IntegerQ[q]]
 /; FreeQ[{a, b}, x] && LtQ[a, 0] && GtQ[b, 0]

Rule 335

Int[((c_.)*(x_))^(m_)*((a_) + (b_.)*(x_)^(n_))^(p_), x_Symbol] :> With[{k = Denominator[m]}, Dist[k/c, Subst[I
nt[x^(k*(m + 1) - 1)*(a + b*(x^(k*n)/c^n))^p, x], x, (c*x)^(1/k)], x]] /; FreeQ[{a, b, c, p}, x] && IGtQ[n, 0]
 && FractionQ[m] && IntBinomialQ[a, b, c, n, m, p, x]

Rule 551

Int[1/(((a_) + (b_.)*(x_)^2)*Sqrt[(c_) + (d_.)*(x_)^2]*Sqrt[(e_) + (f_.)*(x_)^2]), x_Symbol] :> Simp[(1/(a*Sqr
t[c]*Sqrt[e]*Rt[-d/c, 2]))*EllipticPi[b*(c/(a*d)), ArcSin[Rt[-d/c, 2]*x], c*(f/(d*e))], x] /; FreeQ[{a, b, c,
d, e, f}, x] &&  !GtQ[d/c, 0] && GtQ[c, 0] && GtQ[e, 0] &&  !( !GtQ[f/e, 0] && SimplerSqrtQ[-f/e, -d/c])

Rule 947

Int[1/(((d_.) + (e_.)*(x_))*Sqrt[(f_.) + (g_.)*(x_)]*Sqrt[(a_) + (c_.)*(x_)^2]), x_Symbol] :> With[{q = Rt[-c/
a, 2]}, Dist[Sqrt[1 + c*(x^2/a)]/Sqrt[a + c*x^2], Int[1/((d + e*x)*Sqrt[f + g*x]*Sqrt[1 - q*x]*Sqrt[1 + q*x]),
 x], x]] /; FreeQ[{a, c, d, e, f, g}, x] && NeQ[e*f - d*g, 0] && NeQ[c*d^2 + a*e^2, 0] &&  !GtQ[a, 0]

Rule 2081

Int[(u_.)*(P_)^(p_.), x_Symbol] :> With[{m = MinimumMonomialExponent[P, x]}, Dist[P^FracPart[p]/(x^(m*FracPart
[p])*Distrib[1/x^m, P]^FracPart[p]), Int[u*x^(m*p)*Distrib[1/x^m, P]^p, x], x]] /; FreeQ[p, x] &&  !IntegerQ[p
] && SumQ[P] && EveryQ[BinomialQ[#1, x] & , P] &&  !PolyQ[P, x, 2]

Rule 6857

Int[(u_)/((a_) + (b_.)*(x_)^(n_)), x_Symbol] :> With[{v = RationalFunctionExpand[u/(a + b*x^n), x]}, Int[v, x]
 /; SumQ[v]] /; FreeQ[{a, b}, x] && IGtQ[n, 0]

Rubi steps \begin{align*} \text {integral}& = \frac {\left (\sqrt {x} \sqrt {-1+x^2}\right ) \int \frac {-7+x+7 x^2}{\sqrt {x} \sqrt {-1+x^2} \left (1+x^2\right )} \, dx}{\sqrt {-x+x^3}} \\ & = \frac {\left (\sqrt {x} \sqrt {-1+x^2}\right ) \int \left (\frac {7}{\sqrt {x} \sqrt {-1+x^2}}-\frac {14-x}{\sqrt {x} \sqrt {-1+x^2} \left (1+x^2\right )}\right ) \, dx}{\sqrt {-x+x^3}} \\ & = -\frac {\left (\sqrt {x} \sqrt {-1+x^2}\right ) \int \frac {14-x}{\sqrt {x} \sqrt {-1+x^2} \left (1+x^2\right )} \, dx}{\sqrt {-x+x^3}}+\frac {\left (7 \sqrt {x} \sqrt {-1+x^2}\right ) \int \frac {1}{\sqrt {x} \sqrt {-1+x^2}} \, dx}{\sqrt {-x+x^3}} \\ & = -\frac {\left (\sqrt {x} \sqrt {-1+x^2}\right ) \int \left (\frac {\frac {1}{2}+7 i}{(i-x) \sqrt {x} \sqrt {-1+x^2}}-\frac {\frac {1}{2}-7 i}{\sqrt {x} (i+x) \sqrt {-1+x^2}}\right ) \, dx}{\sqrt {-x+x^3}}+\frac {\left (14 \sqrt {x} \sqrt {-1+x^2}\right ) \text {Subst}\left (\int \frac {1}{\sqrt {-1+x^4}} \, dx,x,\sqrt {x}\right )}{\sqrt {-x+x^3}} \\ & = \frac {7 \sqrt {2} \sqrt {-1+x} \sqrt {x} \sqrt {1+x} \operatorname {EllipticF}\left (\arcsin \left (\frac {\sqrt {2} \sqrt {x}}{\sqrt {-1+x}}\right ),\frac {1}{2}\right )}{\sqrt {-x+x^3}}--\frac {\left (\left (\frac {1}{2}-7 i\right ) \sqrt {x} \sqrt {-1+x^2}\right ) \int \frac {1}{\sqrt {x} (i+x) \sqrt {-1+x^2}} \, dx}{\sqrt {-x+x^3}}-\frac {\left (\left (\frac {1}{2}+7 i\right ) \sqrt {x} \sqrt {-1+x^2}\right ) \int \frac {1}{(i-x) \sqrt {x} \sqrt {-1+x^2}} \, dx}{\sqrt {-x+x^3}} \\ & = \frac {7 \sqrt {2} \sqrt {-1+x} \sqrt {x} \sqrt {1+x} \operatorname {EllipticF}\left (\arcsin \left (\frac {\sqrt {2} \sqrt {x}}{\sqrt {-1+x}}\right ),\frac {1}{2}\right )}{\sqrt {-x+x^3}}--\frac {\left (\left (\frac {1}{2}-7 i\right ) \sqrt {x} \sqrt {1-x^2}\right ) \int \frac {1}{\sqrt {1-x} \sqrt {x} (i+x) \sqrt {1+x}} \, dx}{\sqrt {-x+x^3}}-\frac {\left (\left (\frac {1}{2}+7 i\right ) \sqrt {x} \sqrt {1-x^2}\right ) \int \frac {1}{(i-x) \sqrt {1-x} \sqrt {x} \sqrt {1+x}} \, dx}{\sqrt {-x+x^3}} \\ & = \frac {7 \sqrt {2} \sqrt {-1+x} \sqrt {x} \sqrt {1+x} \operatorname {EllipticF}\left (\arcsin \left (\frac {\sqrt {2} \sqrt {x}}{\sqrt {-1+x}}\right ),\frac {1}{2}\right )}{\sqrt {-x+x^3}}--\frac {\left ((1+14 i) \sqrt {x} \sqrt {1-x^2}\right ) \text {Subst}\left (\int \frac {1}{\sqrt {1-x^2} \sqrt {2-x^2} \left ((-1+i)+x^2\right )} \, dx,x,\sqrt {1-x}\right )}{\sqrt {-x+x^3}}-\frac {\left ((1-14 i) \sqrt {x} \sqrt {1-x^2}\right ) \text {Subst}\left (\int \frac {1}{\sqrt {1-x^2} \left ((1+i)-x^2\right ) \sqrt {2-x^2}} \, dx,x,\sqrt {1-x}\right )}{\sqrt {-x+x^3}} \\ & = \frac {7 \sqrt {2} \sqrt {-1+x} \sqrt {x} \sqrt {1+x} \operatorname {EllipticF}\left (\arcsin \left (\frac {\sqrt {2} \sqrt {x}}{\sqrt {-1+x}}\right ),\frac {1}{2}\right )}{\sqrt {-x+x^3}}+\frac {\left (\frac {13}{2}+\frac {15 i}{2}\right ) \sqrt {x} \sqrt {1-x^2} \operatorname {EllipticPi}\left (\frac {1}{2}-\frac {i}{2},\arcsin \left (\sqrt {1-x}\right ),\frac {1}{2}\right )}{\sqrt {2} \sqrt {-x+x^3}}+\frac {\left (\frac {13}{2}-\frac {15 i}{2}\right ) \sqrt {x} \sqrt {1-x^2} \operatorname {EllipticPi}\left (\frac {1}{2}+\frac {i}{2},\arcsin \left (\sqrt {1-x}\right ),\frac {1}{2}\right )}{\sqrt {2} \sqrt {-x+x^3}} \\ \end{align*}

Mathematica [C] (verified)

Result contains complex when optimal does not.

Time = 0.45 (sec) , antiderivative size = 84, normalized size of antiderivative = 1.45 \[ \int \frac {-7+x+7 x^2}{\left (1+x^2\right ) \sqrt {-x+x^3}} \, dx=\frac {\left (\frac {1}{4}+\frac {i}{4}\right ) \sqrt {x} \sqrt {-1+x^2} \left ((-1+14 i) \arctan \left (\frac {(1+i) \sqrt {x}}{\sqrt {-1+x^2}}\right )+(14-i) \arctan \left (\frac {\left (\frac {1}{2}+\frac {i}{2}\right ) \sqrt {-1+x^2}}{\sqrt {x}}\right )\right )}{\sqrt {x \left (-1+x^2\right )}} \]

[In]

Integrate[(-7 + x + 7*x^2)/((1 + x^2)*Sqrt[-x + x^3]),x]

[Out]

((1/4 + I/4)*Sqrt[x]*Sqrt[-1 + x^2]*((-1 + 14*I)*ArcTan[((1 + I)*Sqrt[x])/Sqrt[-1 + x^2]] + (14 - I)*ArcTan[((
1/2 + I/2)*Sqrt[-1 + x^2])/Sqrt[x]]))/Sqrt[x*(-1 + x^2)]

Maple [A] (verified)

Time = 3.78 (sec) , antiderivative size = 92, normalized size of antiderivative = 1.59

method result size
default \(-\frac {13 \ln \left (\frac {x^{2}+2 \sqrt {x^{3}-x}+2 x -1}{x}\right )}{8}+\frac {15 \arctan \left (\frac {\sqrt {x^{3}-x}+x}{x}\right )}{4}+\frac {13 \ln \left (\frac {x^{2}-2 \sqrt {x^{3}-x}+2 x -1}{x}\right )}{8}+\frac {15 \arctan \left (\frac {\sqrt {x^{3}-x}-x}{x}\right )}{4}\) \(92\)
pseudoelliptic \(-\frac {13 \ln \left (\frac {x^{2}+2 \sqrt {x^{3}-x}+2 x -1}{x}\right )}{8}+\frac {15 \arctan \left (\frac {\sqrt {x^{3}-x}+x}{x}\right )}{4}+\frac {13 \ln \left (\frac {x^{2}-2 \sqrt {x^{3}-x}+2 x -1}{x}\right )}{8}+\frac {15 \arctan \left (\frac {\sqrt {x^{3}-x}-x}{x}\right )}{4}\) \(92\)
elliptic \(\frac {7 \sqrt {1+x}\, \sqrt {2-2 x}\, \sqrt {-x}\, \operatorname {EllipticF}\left (\sqrt {1+x}, \frac {\sqrt {2}}{2}\right )}{\sqrt {x^{3}-x}}-\frac {15 \sqrt {1+x}\, \sqrt {2-2 x}\, \sqrt {-x}\, \operatorname {EllipticPi}\left (\sqrt {1+x}, \frac {1}{2}-\frac {i}{2}, \frac {\sqrt {2}}{2}\right )}{4 \sqrt {x^{3}-x}}-\frac {13 i \sqrt {1+x}\, \sqrt {2-2 x}\, \sqrt {-x}\, \operatorname {EllipticPi}\left (\sqrt {1+x}, \frac {1}{2}-\frac {i}{2}, \frac {\sqrt {2}}{2}\right )}{4 \sqrt {x^{3}-x}}-\frac {15 \sqrt {1+x}\, \sqrt {2-2 x}\, \sqrt {-x}\, \operatorname {EllipticPi}\left (\sqrt {1+x}, \frac {1}{2}+\frac {i}{2}, \frac {\sqrt {2}}{2}\right )}{4 \sqrt {x^{3}-x}}+\frac {13 i \sqrt {1+x}\, \sqrt {2-2 x}\, \sqrt {-x}\, \operatorname {EllipticPi}\left (\sqrt {1+x}, \frac {1}{2}+\frac {i}{2}, \frac {\sqrt {2}}{2}\right )}{4 \sqrt {x^{3}-x}}\) \(211\)
trager \(\frac {\operatorname {RootOf}\left (8 \textit {\_Z}^{2}+52 \textit {\_Z} +197\right ) \ln \left (-\frac {-928 \operatorname {RootOf}\left (8 \textit {\_Z}^{2}+52 \textit {\_Z} +197\right )^{2} x^{2}+1392 \operatorname {RootOf}\left (8 \textit {\_Z}^{2}+52 \textit {\_Z} +197\right )^{2} x -3782 \operatorname {RootOf}\left (8 \textit {\_Z}^{2}+52 \textit {\_Z} +197\right ) x^{2}+12000 \sqrt {x^{3}-x}\, \operatorname {RootOf}\left (8 \textit {\_Z}^{2}+52 \textit {\_Z} +197\right )+928 \operatorname {RootOf}\left (8 \textit {\_Z}^{2}+52 \textit {\_Z} +197\right )^{2}+16548 \operatorname {RootOf}\left (8 \textit {\_Z}^{2}+52 \textit {\_Z} +197\right ) x -1477 x^{2}+50250 \sqrt {x^{3}-x}+3782 \operatorname {RootOf}\left (8 \textit {\_Z}^{2}+52 \textit {\_Z} +197\right )+41778 x +1477}{{\left (4 \operatorname {RootOf}\left (8 \textit {\_Z}^{2}+52 \textit {\_Z} +197\right ) x -8 \operatorname {RootOf}\left (8 \textit {\_Z}^{2}+52 \textit {\_Z} +197\right )+43 x -11\right )}^{2}}\right )}{2}-\frac {13 \ln \left (\frac {464 \operatorname {RootOf}\left (8 \textit {\_Z}^{2}+52 \textit {\_Z} +197\right )^{2} x^{2}-696 \operatorname {RootOf}\left (8 \textit {\_Z}^{2}+52 \textit {\_Z} +197\right )^{2} x +4141 \operatorname {RootOf}\left (8 \textit {\_Z}^{2}+52 \textit {\_Z} +197\right ) x^{2}+6000 \sqrt {x^{3}-x}\, \operatorname {RootOf}\left (8 \textit {\_Z}^{2}+52 \textit {\_Z} +197\right )-464 \operatorname {RootOf}\left (8 \textit {\_Z}^{2}+52 \textit {\_Z} +197\right )^{2}-774 \operatorname {RootOf}\left (8 \textit {\_Z}^{2}+52 \textit {\_Z} +197\right ) x +8051 x^{2}+13875 \sqrt {x^{3}-x}-4141 \operatorname {RootOf}\left (8 \textit {\_Z}^{2}+52 \textit {\_Z} +197\right )+3486 x -8051}{{\left (4 \operatorname {RootOf}\left (8 \textit {\_Z}^{2}+52 \textit {\_Z} +197\right ) x -8 \operatorname {RootOf}\left (8 \textit {\_Z}^{2}+52 \textit {\_Z} +197\right )-17 x -41\right )}^{2}}\right )}{4}-\frac {\ln \left (\frac {464 \operatorname {RootOf}\left (8 \textit {\_Z}^{2}+52 \textit {\_Z} +197\right )^{2} x^{2}-696 \operatorname {RootOf}\left (8 \textit {\_Z}^{2}+52 \textit {\_Z} +197\right )^{2} x +4141 \operatorname {RootOf}\left (8 \textit {\_Z}^{2}+52 \textit {\_Z} +197\right ) x^{2}+6000 \sqrt {x^{3}-x}\, \operatorname {RootOf}\left (8 \textit {\_Z}^{2}+52 \textit {\_Z} +197\right )-464 \operatorname {RootOf}\left (8 \textit {\_Z}^{2}+52 \textit {\_Z} +197\right )^{2}-774 \operatorname {RootOf}\left (8 \textit {\_Z}^{2}+52 \textit {\_Z} +197\right ) x +8051 x^{2}+13875 \sqrt {x^{3}-x}-4141 \operatorname {RootOf}\left (8 \textit {\_Z}^{2}+52 \textit {\_Z} +197\right )+3486 x -8051}{{\left (4 \operatorname {RootOf}\left (8 \textit {\_Z}^{2}+52 \textit {\_Z} +197\right ) x -8 \operatorname {RootOf}\left (8 \textit {\_Z}^{2}+52 \textit {\_Z} +197\right )-17 x -41\right )}^{2}}\right ) \operatorname {RootOf}\left (8 \textit {\_Z}^{2}+52 \textit {\_Z} +197\right )}{2}\) \(544\)

[In]

int((7*x^2+x-7)/(x^2+1)/(x^3-x)^(1/2),x,method=_RETURNVERBOSE)

[Out]

-13/8*ln((x^2+2*(x^3-x)^(1/2)+2*x-1)/x)+15/4*arctan(((x^3-x)^(1/2)+x)/x)+13/8*ln((x^2-2*(x^3-x)^(1/2)+2*x-1)/x
)+15/4*arctan(((x^3-x)^(1/2)-x)/x)

Fricas [A] (verification not implemented)

none

Time = 0.28 (sec) , antiderivative size = 76, normalized size of antiderivative = 1.31 \[ \int \frac {-7+x+7 x^2}{\left (1+x^2\right ) \sqrt {-x+x^3}} \, dx=\frac {15}{4} \, \arctan \left (\frac {x^{2} - 2 \, x - 1}{2 \, \sqrt {x^{3} - x}}\right ) + \frac {13}{8} \, \log \left (\frac {x^{4} + 8 \, x^{3} + 2 \, x^{2} - 4 \, \sqrt {x^{3} - x} {\left (x^{2} + 2 \, x - 1\right )} - 8 \, x + 1}{x^{4} + 2 \, x^{2} + 1}\right ) \]

[In]

integrate((7*x^2+x-7)/(x^2+1)/(x^3-x)^(1/2),x, algorithm="fricas")

[Out]

15/4*arctan(1/2*(x^2 - 2*x - 1)/sqrt(x^3 - x)) + 13/8*log((x^4 + 8*x^3 + 2*x^2 - 4*sqrt(x^3 - x)*(x^2 + 2*x -
1) - 8*x + 1)/(x^4 + 2*x^2 + 1))

Sympy [F]

\[ \int \frac {-7+x+7 x^2}{\left (1+x^2\right ) \sqrt {-x+x^3}} \, dx=\int \frac {7 x^{2} + x - 7}{\sqrt {x \left (x - 1\right ) \left (x + 1\right )} \left (x^{2} + 1\right )}\, dx \]

[In]

integrate((7*x**2+x-7)/(x**2+1)/(x**3-x)**(1/2),x)

[Out]

Integral((7*x**2 + x - 7)/(sqrt(x*(x - 1)*(x + 1))*(x**2 + 1)), x)

Maxima [F]

\[ \int \frac {-7+x+7 x^2}{\left (1+x^2\right ) \sqrt {-x+x^3}} \, dx=\int { \frac {7 \, x^{2} + x - 7}{\sqrt {x^{3} - x} {\left (x^{2} + 1\right )}} \,d x } \]

[In]

integrate((7*x^2+x-7)/(x^2+1)/(x^3-x)^(1/2),x, algorithm="maxima")

[Out]

integrate((7*x^2 + x - 7)/(sqrt(x^3 - x)*(x^2 + 1)), x)

Giac [F]

\[ \int \frac {-7+x+7 x^2}{\left (1+x^2\right ) \sqrt {-x+x^3}} \, dx=\int { \frac {7 \, x^{2} + x - 7}{\sqrt {x^{3} - x} {\left (x^{2} + 1\right )}} \,d x } \]

[In]

integrate((7*x^2+x-7)/(x^2+1)/(x^3-x)^(1/2),x, algorithm="giac")

[Out]

integrate((7*x^2 + x - 7)/(sqrt(x^3 - x)*(x^2 + 1)), x)

Mupad [B] (verification not implemented)

Time = 5.41 (sec) , antiderivative size = 100, normalized size of antiderivative = 1.72 \[ \int \frac {-7+x+7 x^2}{\left (1+x^2\right ) \sqrt {-x+x^3}} \, dx=\frac {-14\,\sqrt {-x}\,\sqrt {1-x}\,\sqrt {x+1}\,\mathrm {F}\left (\mathrm {asin}\left (\sqrt {-x}\right )\middle |-1\right )+\sqrt {-x}\,\sqrt {1-x}\,\sqrt {x+1}\,\Pi \left (-\mathrm {i};\mathrm {asin}\left (\sqrt {-x}\right )\middle |-1\right )\,\left (14+1{}\mathrm {i}\right )+\sqrt {-x}\,\sqrt {1-x}\,\sqrt {x+1}\,\Pi \left (1{}\mathrm {i};\mathrm {asin}\left (\sqrt {-x}\right )\middle |-1\right )\,\left (14-\mathrm {i}\right )}{\sqrt {x^3-x}} \]

[In]

int((x + 7*x^2 - 7)/((x^3 - x)^(1/2)*(x^2 + 1)),x)

[Out]

((-x)^(1/2)*(1 - x)^(1/2)*(x + 1)^(1/2)*ellipticPi(-1i, asin((-x)^(1/2)), -1)*(14 + 1i) - 14*(-x)^(1/2)*(1 - x
)^(1/2)*(x + 1)^(1/2)*ellipticF(asin((-x)^(1/2)), -1) + (-x)^(1/2)*(1 - x)^(1/2)*(x + 1)^(1/2)*ellipticPi(1i,
asin((-x)^(1/2)), -1)*(14 - 1i))/(x^3 - x)^(1/2)