\(\int x^5 (-1+x^6)^{3/4} \, dx\) [42]

   Optimal result
   Rubi [A] (verified)
   Mathematica [A] (verified)
   Maple [A] (verified)
   Fricas [A] (verification not implemented)
   Sympy [B] (verification not implemented)
   Maxima [A] (verification not implemented)
   Giac [A] (verification not implemented)
   Mupad [B] (verification not implemented)

Optimal result

Integrand size = 13, antiderivative size = 13 \[ \int x^5 \left (-1+x^6\right )^{3/4} \, dx=\frac {2}{21} \left (-1+x^6\right )^{7/4} \]

[Out]

2/21*(x^6-1)^(7/4)

Rubi [A] (verified)

Time = 0.00 (sec) , antiderivative size = 13, normalized size of antiderivative = 1.00, number of steps used = 1, number of rules used = 1, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.077, Rules used = {267} \[ \int x^5 \left (-1+x^6\right )^{3/4} \, dx=\frac {2}{21} \left (x^6-1\right )^{7/4} \]

[In]

Int[x^5*(-1 + x^6)^(3/4),x]

[Out]

(2*(-1 + x^6)^(7/4))/21

Rule 267

Int[(x_)^(m_.)*((a_) + (b_.)*(x_)^(n_))^(p_), x_Symbol] :> Simp[(a + b*x^n)^(p + 1)/(b*n*(p + 1)), x] /; FreeQ
[{a, b, m, n, p}, x] && EqQ[m, n - 1] && NeQ[p, -1]

Rubi steps \begin{align*} \text {integral}& = \frac {2}{21} \left (-1+x^6\right )^{7/4} \\ \end{align*}

Mathematica [A] (verified)

Time = 0.02 (sec) , antiderivative size = 13, normalized size of antiderivative = 1.00 \[ \int x^5 \left (-1+x^6\right )^{3/4} \, dx=\frac {2}{21} \left (-1+x^6\right )^{7/4} \]

[In]

Integrate[x^5*(-1 + x^6)^(3/4),x]

[Out]

(2*(-1 + x^6)^(7/4))/21

Maple [A] (verified)

Time = 0.78 (sec) , antiderivative size = 10, normalized size of antiderivative = 0.77

method result size
derivativedivides \(\frac {2 \left (x^{6}-1\right )^{\frac {7}{4}}}{21}\) \(10\)
default \(\frac {2 \left (x^{6}-1\right )^{\frac {7}{4}}}{21}\) \(10\)
risch \(\frac {2 \left (x^{6}-1\right )^{\frac {7}{4}}}{21}\) \(10\)
pseudoelliptic \(\frac {2 \left (x^{6}-1\right )^{\frac {7}{4}}}{21}\) \(10\)
trager \(\left (\frac {2 x^{6}}{21}-\frac {2}{21}\right ) \left (x^{6}-1\right )^{\frac {3}{4}}\) \(16\)
gosper \(\frac {2 \left (x -1\right ) \left (1+x \right ) \left (x^{2}+x +1\right ) \left (x^{2}-x +1\right ) \left (x^{6}-1\right )^{\frac {3}{4}}}{21}\) \(30\)
meijerg \(\frac {\operatorname {signum}\left (x^{6}-1\right )^{\frac {3}{4}} x^{6} \operatorname {hypergeom}\left (\left [-\frac {3}{4}, 1\right ], \left [2\right ], x^{6}\right )}{6 {\left (-\operatorname {signum}\left (x^{6}-1\right )\right )}^{\frac {3}{4}}}\) \(33\)

[In]

int(x^5*(x^6-1)^(3/4),x,method=_RETURNVERBOSE)

[Out]

2/21*(x^6-1)^(7/4)

Fricas [A] (verification not implemented)

none

Time = 0.24 (sec) , antiderivative size = 9, normalized size of antiderivative = 0.69 \[ \int x^5 \left (-1+x^6\right )^{3/4} \, dx=\frac {2}{21} \, {\left (x^{6} - 1\right )}^{\frac {7}{4}} \]

[In]

integrate(x^5*(x^6-1)^(3/4),x, algorithm="fricas")

[Out]

2/21*(x^6 - 1)^(7/4)

Sympy [B] (verification not implemented)

Leaf count of result is larger than twice the leaf count of optimal. 26 vs. \(2 (10) = 20\).

Time = 0.19 (sec) , antiderivative size = 26, normalized size of antiderivative = 2.00 \[ \int x^5 \left (-1+x^6\right )^{3/4} \, dx=\frac {2 x^{6} \left (x^{6} - 1\right )^{\frac {3}{4}}}{21} - \frac {2 \left (x^{6} - 1\right )^{\frac {3}{4}}}{21} \]

[In]

integrate(x**5*(x**6-1)**(3/4),x)

[Out]

2*x**6*(x**6 - 1)**(3/4)/21 - 2*(x**6 - 1)**(3/4)/21

Maxima [A] (verification not implemented)

none

Time = 0.18 (sec) , antiderivative size = 9, normalized size of antiderivative = 0.69 \[ \int x^5 \left (-1+x^6\right )^{3/4} \, dx=\frac {2}{21} \, {\left (x^{6} - 1\right )}^{\frac {7}{4}} \]

[In]

integrate(x^5*(x^6-1)^(3/4),x, algorithm="maxima")

[Out]

2/21*(x^6 - 1)^(7/4)

Giac [A] (verification not implemented)

none

Time = 0.28 (sec) , antiderivative size = 9, normalized size of antiderivative = 0.69 \[ \int x^5 \left (-1+x^6\right )^{3/4} \, dx=\frac {2}{21} \, {\left (x^{6} - 1\right )}^{\frac {7}{4}} \]

[In]

integrate(x^5*(x^6-1)^(3/4),x, algorithm="giac")

[Out]

2/21*(x^6 - 1)^(7/4)

Mupad [B] (verification not implemented)

Time = 5.28 (sec) , antiderivative size = 9, normalized size of antiderivative = 0.69 \[ \int x^5 \left (-1+x^6\right )^{3/4} \, dx=\frac {2\,{\left (x^6-1\right )}^{7/4}}{21} \]

[In]

int(x^5*(x^6 - 1)^(3/4),x)

[Out]

(2*(x^6 - 1)^(7/4))/21