\(\int \frac {x}{\sqrt {-b+a^2 x^2} \sqrt [4]{a x+\sqrt {-b+a^2 x^2}}} \, dx\) [823]

   Optimal result
   Rubi [A] (verified)
   Mathematica [A] (verified)
   Maple [F]
   Fricas [A] (verification not implemented)
   Sympy [F]
   Maxima [F]
   Giac [F(-1)]
   Mupad [F(-1)]

Optimal result

Integrand size = 40, antiderivative size = 62 \[ \int \frac {x}{\sqrt {-b+a^2 x^2} \sqrt [4]{a x+\sqrt {-b+a^2 x^2}}} \, dx=-\frac {2 b}{5 a^2 \left (a x+\sqrt {-b+a^2 x^2}\right )^{5/4}}+\frac {2 \left (a x+\sqrt {-b+a^2 x^2}\right )^{3/4}}{3 a^2} \]

[Out]

-2/5*b/a^2/(a*x+(a^2*x^2-b)^(1/2))^(5/4)+2/3*(a*x+(a^2*x^2-b)^(1/2))^(3/4)/a^2

Rubi [A] (verified)

Time = 0.23 (sec) , antiderivative size = 62, normalized size of antiderivative = 1.00, number of steps used = 3, number of rules used = 2, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.050, Rules used = {2145, 14} \[ \int \frac {x}{\sqrt {-b+a^2 x^2} \sqrt [4]{a x+\sqrt {-b+a^2 x^2}}} \, dx=\frac {2 \left (\sqrt {a^2 x^2-b}+a x\right )^{3/4}}{3 a^2}-\frac {2 b}{5 a^2 \left (\sqrt {a^2 x^2-b}+a x\right )^{5/4}} \]

[In]

Int[x/(Sqrt[-b + a^2*x^2]*(a*x + Sqrt[-b + a^2*x^2])^(1/4)),x]

[Out]

(-2*b)/(5*a^2*(a*x + Sqrt[-b + a^2*x^2])^(5/4)) + (2*(a*x + Sqrt[-b + a^2*x^2])^(3/4))/(3*a^2)

Rule 14

Int[(u_)*((c_.)*(x_))^(m_.), x_Symbol] :> Int[ExpandIntegrand[(c*x)^m*u, x], x] /; FreeQ[{c, m}, x] && SumQ[u]
 &&  !LinearQ[u, x] &&  !MatchQ[u, (a_) + (b_.)*(v_) /; FreeQ[{a, b}, x] && InverseFunctionQ[v]]

Rule 2145

Int[(x_)^(p_.)*((g_) + (i_.)*(x_)^2)^(m_.)*((e_.)*(x_) + (f_.)*Sqrt[(a_) + (c_.)*(x_)^2])^(n_.), x_Symbol] :>
Dist[(1/(2^(2*m + p + 1)*e^(p + 1)*f^(2*m)))*(i/c)^m, Subst[Int[x^(n - 2*m - p - 2)*((-a)*f^2 + x^2)^p*(a*f^2
+ x^2)^(2*m + 1), x], x, e*x + f*Sqrt[a + c*x^2]], x] /; FreeQ[{a, c, e, f, g, i, n}, x] && EqQ[e^2 - c*f^2, 0
] && EqQ[c*g - a*i, 0] && IntegersQ[p, 2*m] && (IntegerQ[m] || GtQ[i/c, 0])

Rubi steps \begin{align*} \text {integral}& = \frac {\text {Subst}\left (\int \frac {b+x^2}{x^{9/4}} \, dx,x,a x+\sqrt {-b+a^2 x^2}\right )}{2 a^2} \\ & = \frac {\text {Subst}\left (\int \left (\frac {b}{x^{9/4}}+\frac {1}{\sqrt [4]{x}}\right ) \, dx,x,a x+\sqrt {-b+a^2 x^2}\right )}{2 a^2} \\ & = -\frac {2 b}{5 a^2 \left (a x+\sqrt {-b+a^2 x^2}\right )^{5/4}}+\frac {2 \left (a x+\sqrt {-b+a^2 x^2}\right )^{3/4}}{3 a^2} \\ \end{align*}

Mathematica [A] (verified)

Time = 0.10 (sec) , antiderivative size = 57, normalized size of antiderivative = 0.92 \[ \int \frac {x}{\sqrt {-b+a^2 x^2} \sqrt [4]{a x+\sqrt {-b+a^2 x^2}}} \, dx=\frac {4 \left (-4 b+5 a x \left (a x+\sqrt {-b+a^2 x^2}\right )\right )}{15 a^2 \left (a x+\sqrt {-b+a^2 x^2}\right )^{5/4}} \]

[In]

Integrate[x/(Sqrt[-b + a^2*x^2]*(a*x + Sqrt[-b + a^2*x^2])^(1/4)),x]

[Out]

(4*(-4*b + 5*a*x*(a*x + Sqrt[-b + a^2*x^2])))/(15*a^2*(a*x + Sqrt[-b + a^2*x^2])^(5/4))

Maple [F]

\[\int \frac {x}{\sqrt {a^{2} x^{2}-b}\, \left (a x +\sqrt {a^{2} x^{2}-b}\right )^{\frac {1}{4}}}d x\]

[In]

int(x/(a^2*x^2-b)^(1/2)/(a*x+(a^2*x^2-b)^(1/2))^(1/4),x)

[Out]

int(x/(a^2*x^2-b)^(1/2)/(a*x+(a^2*x^2-b)^(1/2))^(1/4),x)

Fricas [A] (verification not implemented)

none

Time = 0.24 (sec) , antiderivative size = 56, normalized size of antiderivative = 0.90 \[ \int \frac {x}{\sqrt {-b+a^2 x^2} \sqrt [4]{a x+\sqrt {-b+a^2 x^2}}} \, dx=-\frac {4 \, {\left (3 \, a^{2} x^{2} - 3 \, \sqrt {a^{2} x^{2} - b} a x - 4 \, b\right )} {\left (a x + \sqrt {a^{2} x^{2} - b}\right )}^{\frac {3}{4}}}{15 \, a^{2} b} \]

[In]

integrate(x/(a^2*x^2-b)^(1/2)/(a*x+(a^2*x^2-b)^(1/2))^(1/4),x, algorithm="fricas")

[Out]

-4/15*(3*a^2*x^2 - 3*sqrt(a^2*x^2 - b)*a*x - 4*b)*(a*x + sqrt(a^2*x^2 - b))^(3/4)/(a^2*b)

Sympy [F]

\[ \int \frac {x}{\sqrt {-b+a^2 x^2} \sqrt [4]{a x+\sqrt {-b+a^2 x^2}}} \, dx=\int \frac {x}{\sqrt [4]{a x + \sqrt {a^{2} x^{2} - b}} \sqrt {a^{2} x^{2} - b}}\, dx \]

[In]

integrate(x/(a**2*x**2-b)**(1/2)/(a*x+(a**2*x**2-b)**(1/2))**(1/4),x)

[Out]

Integral(x/((a*x + sqrt(a**2*x**2 - b))**(1/4)*sqrt(a**2*x**2 - b)), x)

Maxima [F]

\[ \int \frac {x}{\sqrt {-b+a^2 x^2} \sqrt [4]{a x+\sqrt {-b+a^2 x^2}}} \, dx=\int { \frac {x}{\sqrt {a^{2} x^{2} - b} {\left (a x + \sqrt {a^{2} x^{2} - b}\right )}^{\frac {1}{4}}} \,d x } \]

[In]

integrate(x/(a^2*x^2-b)^(1/2)/(a*x+(a^2*x^2-b)^(1/2))^(1/4),x, algorithm="maxima")

[Out]

integrate(x/(sqrt(a^2*x^2 - b)*(a*x + sqrt(a^2*x^2 - b))^(1/4)), x)

Giac [F(-1)]

Timed out. \[ \int \frac {x}{\sqrt {-b+a^2 x^2} \sqrt [4]{a x+\sqrt {-b+a^2 x^2}}} \, dx=\text {Timed out} \]

[In]

integrate(x/(a^2*x^2-b)^(1/2)/(a*x+(a^2*x^2-b)^(1/2))^(1/4),x, algorithm="giac")

[Out]

Timed out

Mupad [F(-1)]

Timed out. \[ \int \frac {x}{\sqrt {-b+a^2 x^2} \sqrt [4]{a x+\sqrt {-b+a^2 x^2}}} \, dx=\int \frac {x}{{\left (a\,x+\sqrt {a^2\,x^2-b}\right )}^{1/4}\,\sqrt {a^2\,x^2-b}} \,d x \]

[In]

int(x/((a*x + (a^2*x^2 - b)^(1/2))^(1/4)*(a^2*x^2 - b)^(1/2)),x)

[Out]

int(x/((a*x + (a^2*x^2 - b)^(1/2))^(1/4)*(a^2*x^2 - b)^(1/2)), x)