\(\int \frac {\sqrt {-1+x^6} (-1+2 x^6)^2}{x^7 (-1+4 x^6)} \, dx\) [849]

   Optimal result
   Rubi [A] (verified)
   Mathematica [A] (verified)
   Maple [A] (verified)
   Fricas [A] (verification not implemented)
   Sympy [A] (verification not implemented)
   Maxima [F]
   Giac [A] (verification not implemented)
   Mupad [B] (verification not implemented)

Optimal result

Integrand size = 31, antiderivative size = 64 \[ \int \frac {\sqrt {-1+x^6} \left (-1+2 x^6\right )^2}{x^7 \left (-1+4 x^6\right )} \, dx=\frac {\sqrt {-1+x^6} \left (1+2 x^6\right )}{6 x^6}-\frac {1}{6} \arctan \left (\sqrt {-1+x^6}\right )-\frac {\arctan \left (\frac {2 \sqrt {-1+x^6}}{\sqrt {3}}\right )}{2 \sqrt {3}} \]

[Out]

1/6*(x^6-1)^(1/2)*(2*x^6+1)/x^6-1/6*arctan((x^6-1)^(1/2))-1/6*arctan(2/3*(x^6-1)^(1/2)*3^(1/2))*3^(1/2)

Rubi [A] (verified)

Time = 0.06 (sec) , antiderivative size = 70, normalized size of antiderivative = 1.09, number of steps used = 9, number of rules used = 6, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.194, Rules used = {587, 186, 43, 65, 209, 52} \[ \int \frac {\sqrt {-1+x^6} \left (-1+2 x^6\right )^2}{x^7 \left (-1+4 x^6\right )} \, dx=-\frac {1}{6} \arctan \left (\sqrt {x^6-1}\right )-\frac {\arctan \left (\frac {2 \sqrt {x^6-1}}{\sqrt {3}}\right )}{2 \sqrt {3}}+\frac {\sqrt {x^6-1}}{6 x^6}+\frac {\sqrt {x^6-1}}{3} \]

[In]

Int[(Sqrt[-1 + x^6]*(-1 + 2*x^6)^2)/(x^7*(-1 + 4*x^6)),x]

[Out]

Sqrt[-1 + x^6]/3 + Sqrt[-1 + x^6]/(6*x^6) - ArcTan[Sqrt[-1 + x^6]]/6 - ArcTan[(2*Sqrt[-1 + x^6])/Sqrt[3]]/(2*S
qrt[3])

Rule 43

Int[((a_.) + (b_.)*(x_))^(m_)*((c_.) + (d_.)*(x_))^(n_), x_Symbol] :> Simp[(a + b*x)^(m + 1)*((c + d*x)^n/(b*(
m + 1))), x] - Dist[d*(n/(b*(m + 1))), Int[(a + b*x)^(m + 1)*(c + d*x)^(n - 1), x], x] /; FreeQ[{a, b, c, d, n
}, x] && NeQ[b*c - a*d, 0] && ILtQ[m, -1] &&  !IntegerQ[n] && GtQ[n, 0]

Rule 52

Int[((a_.) + (b_.)*(x_))^(m_)*((c_.) + (d_.)*(x_))^(n_), x_Symbol] :> Simp[(a + b*x)^(m + 1)*((c + d*x)^n/(b*(
m + n + 1))), x] + Dist[n*((b*c - a*d)/(b*(m + n + 1))), Int[(a + b*x)^m*(c + d*x)^(n - 1), x], x] /; FreeQ[{a
, b, c, d}, x] && NeQ[b*c - a*d, 0] && GtQ[n, 0] && NeQ[m + n + 1, 0] &&  !(IGtQ[m, 0] && ( !IntegerQ[n] || (G
tQ[m, 0] && LtQ[m - n, 0]))) &&  !ILtQ[m + n + 2, 0] && IntLinearQ[a, b, c, d, m, n, x]

Rule 65

Int[((a_.) + (b_.)*(x_))^(m_)*((c_.) + (d_.)*(x_))^(n_), x_Symbol] :> With[{p = Denominator[m]}, Dist[p/b, Sub
st[Int[x^(p*(m + 1) - 1)*(c - a*(d/b) + d*(x^p/b))^n, x], x, (a + b*x)^(1/p)], x]] /; FreeQ[{a, b, c, d}, x] &
& NeQ[b*c - a*d, 0] && LtQ[-1, m, 0] && LeQ[-1, n, 0] && LeQ[Denominator[n], Denominator[m]] && IntLinearQ[a,
b, c, d, m, n, x]

Rule 186

Int[((a_.) + (b_.)*(x_))^(m_)*((c_.) + (d_.)*(x_))^(n_)*((e_.) + (f_.)*(x_))^(p_)*((g_.) + (h_.)*(x_))^(q_), x
_Symbol] :> Int[ExpandIntegrand[(a + b*x)^m*(c + d*x)^n*(e + f*x)^p*(g + h*x)^q, x], x] /; FreeQ[{a, b, c, d,
e, f, g, h, m, n}, x] && IntegersQ[p, q]

Rule 209

Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> Simp[(1/(Rt[a, 2]*Rt[b, 2]))*ArcTan[Rt[b, 2]*(x/Rt[a, 2])], x] /;
 FreeQ[{a, b}, x] && PosQ[a/b] && (GtQ[a, 0] || GtQ[b, 0])

Rule 587

Int[(x_)^(m_.)*((a_) + (b_.)*(x_)^(n_))^(p_.)*((c_) + (d_.)*(x_)^(n_))^(q_.)*((e_) + (f_.)*(x_)^(n_))^(r_.), x
_Symbol] :> Dist[1/n, Subst[Int[x^(Simplify[(m + 1)/n] - 1)*(a + b*x)^p*(c + d*x)^q*(e + f*x)^r, x], x, x^n],
x] /; FreeQ[{a, b, c, d, e, f, m, n, p, q, r}, x] && IntegerQ[Simplify[(m + 1)/n]]

Rubi steps \begin{align*} \text {integral}& = \frac {1}{6} \text {Subst}\left (\int \frac {\sqrt {-1+x} (-1+2 x)^2}{x^2 (-1+4 x)} \, dx,x,x^6\right ) \\ & = \frac {1}{6} \text {Subst}\left (\int \left (-\frac {\sqrt {-1+x}}{x^2}+\frac {4 \sqrt {-1+x}}{-1+4 x}\right ) \, dx,x,x^6\right ) \\ & = -\left (\frac {1}{6} \text {Subst}\left (\int \frac {\sqrt {-1+x}}{x^2} \, dx,x,x^6\right )\right )+\frac {2}{3} \text {Subst}\left (\int \frac {\sqrt {-1+x}}{-1+4 x} \, dx,x,x^6\right ) \\ & = \frac {1}{3} \sqrt {-1+x^6}+\frac {\sqrt {-1+x^6}}{6 x^6}-\frac {1}{12} \text {Subst}\left (\int \frac {1}{\sqrt {-1+x} x} \, dx,x,x^6\right )-\frac {1}{2} \text {Subst}\left (\int \frac {1}{\sqrt {-1+x} (-1+4 x)} \, dx,x,x^6\right ) \\ & = \frac {1}{3} \sqrt {-1+x^6}+\frac {\sqrt {-1+x^6}}{6 x^6}-\frac {1}{6} \text {Subst}\left (\int \frac {1}{1+x^2} \, dx,x,\sqrt {-1+x^6}\right )-\text {Subst}\left (\int \frac {1}{3+4 x^2} \, dx,x,\sqrt {-1+x^6}\right ) \\ & = \frac {1}{3} \sqrt {-1+x^6}+\frac {\sqrt {-1+x^6}}{6 x^6}-\frac {1}{6} \arctan \left (\sqrt {-1+x^6}\right )-\frac {\arctan \left (\frac {2 \sqrt {-1+x^6}}{\sqrt {3}}\right )}{2 \sqrt {3}} \\ \end{align*}

Mathematica [A] (verified)

Time = 0.09 (sec) , antiderivative size = 61, normalized size of antiderivative = 0.95 \[ \int \frac {\sqrt {-1+x^6} \left (-1+2 x^6\right )^2}{x^7 \left (-1+4 x^6\right )} \, dx=\frac {1}{6} \left (\frac {\sqrt {-1+x^6} \left (1+2 x^6\right )}{x^6}-\arctan \left (\sqrt {-1+x^6}\right )-\sqrt {3} \arctan \left (\frac {2 \sqrt {-1+x^6}}{\sqrt {3}}\right )\right ) \]

[In]

Integrate[(Sqrt[-1 + x^6]*(-1 + 2*x^6)^2)/(x^7*(-1 + 4*x^6)),x]

[Out]

((Sqrt[-1 + x^6]*(1 + 2*x^6))/x^6 - ArcTan[Sqrt[-1 + x^6]] - Sqrt[3]*ArcTan[(2*Sqrt[-1 + x^6])/Sqrt[3]])/6

Maple [A] (verified)

Time = 3.00 (sec) , antiderivative size = 92, normalized size of antiderivative = 1.44

method result size
pseudoelliptic \(\frac {\sqrt {3}\, \arctan \left (\frac {\left (x^{3}+2\right ) \sqrt {3}}{3 \sqrt {x^{6}-1}}\right ) x^{6}-\sqrt {3}\, \arctan \left (\frac {\left (x^{3}-2\right ) \sqrt {3}}{3 \sqrt {x^{6}-1}}\right ) x^{6}+2 \arctan \left (\frac {1}{\sqrt {x^{6}-1}}\right ) x^{6}+4 \sqrt {x^{6}-1}\, x^{6}+2 \sqrt {x^{6}-1}}{12 x^{6}}\) \(92\)
trager \(\frac {\sqrt {x^{6}-1}\, \left (2 x^{6}+1\right )}{6 x^{6}}+\frac {\operatorname {RootOf}\left (\textit {\_Z}^{2}+1\right ) \ln \left (\frac {-\operatorname {RootOf}\left (\textit {\_Z}^{2}+1\right )+\sqrt {x^{6}-1}}{x^{3}}\right )}{6}+\frac {\operatorname {RootOf}\left (\textit {\_Z}^{2}+3\right ) \ln \left (\frac {4 \operatorname {RootOf}\left (\textit {\_Z}^{2}+3\right ) x^{6}-7 \operatorname {RootOf}\left (\textit {\_Z}^{2}+3\right )+12 \sqrt {x^{6}-1}}{\left (2 x^{3}-1\right ) \left (2 x^{3}+1\right )}\right )}{12}\) \(107\)
risch \(\frac {\sqrt {x^{6}-1}}{6 x^{6}}+\frac {\sqrt {x^{6}-1}}{3}-\frac {\operatorname {RootOf}\left (\textit {\_Z}^{2}+1\right ) \ln \left (\frac {\operatorname {RootOf}\left (\textit {\_Z}^{2}+1\right )+\sqrt {x^{6}-1}}{x^{3}}\right )}{6}-\frac {\operatorname {RootOf}\left (\textit {\_Z}^{2}+3\right ) \ln \left (-\frac {4 \operatorname {RootOf}\left (\textit {\_Z}^{2}+3\right ) x^{6}-7 \operatorname {RootOf}\left (\textit {\_Z}^{2}+3\right )-12 \sqrt {x^{6}-1}}{\left (2 x^{3}-1\right ) \left (2 x^{3}+1\right )}\right )}{12}\) \(108\)

[In]

int((x^6-1)^(1/2)*(2*x^6-1)^2/x^7/(4*x^6-1),x,method=_RETURNVERBOSE)

[Out]

1/12*(3^(1/2)*arctan(1/3*(x^3+2)*3^(1/2)/(x^6-1)^(1/2))*x^6-3^(1/2)*arctan(1/3*(x^3-2)*3^(1/2)/(x^6-1)^(1/2))*
x^6+2*arctan(1/(x^6-1)^(1/2))*x^6+4*(x^6-1)^(1/2)*x^6+2*(x^6-1)^(1/2))/x^6

Fricas [A] (verification not implemented)

none

Time = 0.25 (sec) , antiderivative size = 54, normalized size of antiderivative = 0.84 \[ \int \frac {\sqrt {-1+x^6} \left (-1+2 x^6\right )^2}{x^7 \left (-1+4 x^6\right )} \, dx=-\frac {\sqrt {3} x^{6} \arctan \left (\frac {2}{3} \, \sqrt {3} \sqrt {x^{6} - 1}\right ) + x^{6} \arctan \left (\sqrt {x^{6} - 1}\right ) - {\left (2 \, x^{6} + 1\right )} \sqrt {x^{6} - 1}}{6 \, x^{6}} \]

[In]

integrate((x^6-1)^(1/2)*(2*x^6-1)^2/x^7/(4*x^6-1),x, algorithm="fricas")

[Out]

-1/6*(sqrt(3)*x^6*arctan(2/3*sqrt(3)*sqrt(x^6 - 1)) + x^6*arctan(sqrt(x^6 - 1)) - (2*x^6 + 1)*sqrt(x^6 - 1))/x
^6

Sympy [A] (verification not implemented)

Time = 16.35 (sec) , antiderivative size = 60, normalized size of antiderivative = 0.94 \[ \int \frac {\sqrt {-1+x^6} \left (-1+2 x^6\right )^2}{x^7 \left (-1+4 x^6\right )} \, dx=\frac {\sqrt {x^{6} - 1}}{3} - \frac {\sqrt {3} \operatorname {atan}{\left (\frac {2 \sqrt {3} \sqrt {x^{6} - 1}}{3} \right )}}{6} - \frac {\operatorname {atan}{\left (\sqrt {x^{6} - 1} \right )}}{6} + \frac {\sqrt {x^{6} - 1}}{6 x^{6}} \]

[In]

integrate((x**6-1)**(1/2)*(2*x**6-1)**2/x**7/(4*x**6-1),x)

[Out]

sqrt(x**6 - 1)/3 - sqrt(3)*atan(2*sqrt(3)*sqrt(x**6 - 1)/3)/6 - atan(sqrt(x**6 - 1))/6 + sqrt(x**6 - 1)/(6*x**
6)

Maxima [F]

\[ \int \frac {\sqrt {-1+x^6} \left (-1+2 x^6\right )^2}{x^7 \left (-1+4 x^6\right )} \, dx=\int { \frac {{\left (2 \, x^{6} - 1\right )}^{2} \sqrt {x^{6} - 1}}{{\left (4 \, x^{6} - 1\right )} x^{7}} \,d x } \]

[In]

integrate((x^6-1)^(1/2)*(2*x^6-1)^2/x^7/(4*x^6-1),x, algorithm="maxima")

[Out]

integrate((2*x^6 - 1)^2*sqrt(x^6 - 1)/((4*x^6 - 1)*x^7), x)

Giac [A] (verification not implemented)

none

Time = 0.27 (sec) , antiderivative size = 50, normalized size of antiderivative = 0.78 \[ \int \frac {\sqrt {-1+x^6} \left (-1+2 x^6\right )^2}{x^7 \left (-1+4 x^6\right )} \, dx=-\frac {1}{6} \, \sqrt {3} \arctan \left (\frac {2}{3} \, \sqrt {3} \sqrt {x^{6} - 1}\right ) + \frac {1}{3} \, \sqrt {x^{6} - 1} + \frac {\sqrt {x^{6} - 1}}{6 \, x^{6}} - \frac {1}{6} \, \arctan \left (\sqrt {x^{6} - 1}\right ) \]

[In]

integrate((x^6-1)^(1/2)*(2*x^6-1)^2/x^7/(4*x^6-1),x, algorithm="giac")

[Out]

-1/6*sqrt(3)*arctan(2/3*sqrt(3)*sqrt(x^6 - 1)) + 1/3*sqrt(x^6 - 1) + 1/6*sqrt(x^6 - 1)/x^6 - 1/6*arctan(sqrt(x
^6 - 1))

Mupad [B] (verification not implemented)

Time = 5.72 (sec) , antiderivative size = 50, normalized size of antiderivative = 0.78 \[ \int \frac {\sqrt {-1+x^6} \left (-1+2 x^6\right )^2}{x^7 \left (-1+4 x^6\right )} \, dx=\frac {\sqrt {x^6-1}}{3}-\frac {\sqrt {3}\,\mathrm {atan}\left (\frac {2\,\sqrt {3}\,\sqrt {x^6-1}}{3}\right )}{6}-\frac {\mathrm {atan}\left (\sqrt {x^6-1}\right )}{6}+\frac {\sqrt {x^6-1}}{6\,x^6} \]

[In]

int(((x^6 - 1)^(1/2)*(2*x^6 - 1)^2)/(x^7*(4*x^6 - 1)),x)

[Out]

(x^6 - 1)^(1/2)/3 - (3^(1/2)*atan((2*3^(1/2)*(x^6 - 1)^(1/2))/3))/6 - atan((x^6 - 1)^(1/2))/6 + (x^6 - 1)^(1/2
)/(6*x^6)