\(\int x^7 \sqrt [4]{-x+x^4} \, dx\) [898]

   Optimal result
   Rubi [B] (verified)
   Mathematica [C] (verified)
   Maple [C] (warning: unable to verify)
   Fricas [A] (verification not implemented)
   Sympy [F]
   Maxima [F]
   Giac [A] (verification not implemented)
   Mupad [F(-1)]

Optimal result

Integrand size = 15, antiderivative size = 68 \[ \int x^7 \sqrt [4]{-x+x^4} \, dx=\frac {1}{288} \sqrt [4]{-x+x^4} \left (-7 x^2-4 x^5+32 x^8\right )+\frac {7}{192} \arctan \left (\frac {x}{\sqrt [4]{-x+x^4}}\right )-\frac {7}{192} \text {arctanh}\left (\frac {x}{\sqrt [4]{-x+x^4}}\right ) \]

[Out]

1/288*(x^4-x)^(1/4)*(32*x^8-4*x^5-7*x^2)+7/192*arctan(x/(x^4-x)^(1/4))-7/192*arctanh(x/(x^4-x)^(1/4))

Rubi [B] (verified)

Leaf count is larger than twice the leaf count of optimal. \(145\) vs. \(2(68)=136\).

Time = 0.09 (sec) , antiderivative size = 145, normalized size of antiderivative = 2.13, number of steps used = 10, number of rules used = 9, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.600, Rules used = {2046, 2049, 2057, 335, 281, 338, 304, 209, 212} \[ \int x^7 \sqrt [4]{-x+x^4} \, dx=\frac {7 \left (x^3-1\right )^{3/4} x^{3/4} \arctan \left (\frac {x^{3/4}}{\sqrt [4]{x^3-1}}\right )}{192 \left (x^4-x\right )^{3/4}}-\frac {7 \left (x^3-1\right )^{3/4} x^{3/4} \text {arctanh}\left (\frac {x^{3/4}}{\sqrt [4]{x^3-1}}\right )}{192 \left (x^4-x\right )^{3/4}}+\frac {1}{9} \sqrt [4]{x^4-x} x^8-\frac {1}{72} \sqrt [4]{x^4-x} x^5-\frac {7}{288} \sqrt [4]{x^4-x} x^2 \]

[In]

Int[x^7*(-x + x^4)^(1/4),x]

[Out]

(-7*x^2*(-x + x^4)^(1/4))/288 - (x^5*(-x + x^4)^(1/4))/72 + (x^8*(-x + x^4)^(1/4))/9 + (7*x^(3/4)*(-1 + x^3)^(
3/4)*ArcTan[x^(3/4)/(-1 + x^3)^(1/4)])/(192*(-x + x^4)^(3/4)) - (7*x^(3/4)*(-1 + x^3)^(3/4)*ArcTanh[x^(3/4)/(-
1 + x^3)^(1/4)])/(192*(-x + x^4)^(3/4))

Rule 209

Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> Simp[(1/(Rt[a, 2]*Rt[b, 2]))*ArcTan[Rt[b, 2]*(x/Rt[a, 2])], x] /;
 FreeQ[{a, b}, x] && PosQ[a/b] && (GtQ[a, 0] || GtQ[b, 0])

Rule 212

Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> Simp[(1/(Rt[a, 2]*Rt[-b, 2]))*ArcTanh[Rt[-b, 2]*(x/Rt[a, 2])], x]
 /; FreeQ[{a, b}, x] && NegQ[a/b] && (GtQ[a, 0] || LtQ[b, 0])

Rule 281

Int[(x_)^(m_.)*((a_) + (b_.)*(x_)^(n_))^(p_), x_Symbol] :> With[{k = GCD[m + 1, n]}, Dist[1/k, Subst[Int[x^((m
 + 1)/k - 1)*(a + b*x^(n/k))^p, x], x, x^k], x] /; k != 1] /; FreeQ[{a, b, p}, x] && IGtQ[n, 0] && IntegerQ[m]

Rule 304

Int[(x_)^2/((a_) + (b_.)*(x_)^4), x_Symbol] :> With[{r = Numerator[Rt[-a/b, 2]], s = Denominator[Rt[-a/b, 2]]}
, Dist[s/(2*b), Int[1/(r + s*x^2), x], x] - Dist[s/(2*b), Int[1/(r - s*x^2), x], x]] /; FreeQ[{a, b}, x] &&  !
GtQ[a/b, 0]

Rule 335

Int[((c_.)*(x_))^(m_)*((a_) + (b_.)*(x_)^(n_))^(p_), x_Symbol] :> With[{k = Denominator[m]}, Dist[k/c, Subst[I
nt[x^(k*(m + 1) - 1)*(a + b*(x^(k*n)/c^n))^p, x], x, (c*x)^(1/k)], x]] /; FreeQ[{a, b, c, p}, x] && IGtQ[n, 0]
 && FractionQ[m] && IntBinomialQ[a, b, c, n, m, p, x]

Rule 338

Int[(x_)^(m_.)*((a_) + (b_.)*(x_)^(n_))^(p_), x_Symbol] :> Dist[a^(p + (m + 1)/n), Subst[Int[x^m/(1 - b*x^n)^(
p + (m + 1)/n + 1), x], x, x/(a + b*x^n)^(1/n)], x] /; FreeQ[{a, b}, x] && IGtQ[n, 0] && LtQ[-1, p, 0] && NeQ[
p, -2^(-1)] && IntegersQ[m, p + (m + 1)/n]

Rule 2046

Int[((c_.)*(x_))^(m_.)*((a_.)*(x_)^(j_.) + (b_.)*(x_)^(n_.))^(p_), x_Symbol] :> Simp[(c*x)^(m + 1)*((a*x^j + b
*x^n)^p/(c*(m + n*p + 1))), x] + Dist[a*(n - j)*(p/(c^j*(m + n*p + 1))), Int[(c*x)^(m + j)*(a*x^j + b*x^n)^(p
- 1), x], x] /; FreeQ[{a, b, c, m}, x] &&  !IntegerQ[p] && LtQ[0, j, n] && (IntegersQ[j, n] || GtQ[c, 0]) && G
tQ[p, 0] && NeQ[m + n*p + 1, 0]

Rule 2049

Int[((c_.)*(x_))^(m_.)*((a_.)*(x_)^(j_.) + (b_.)*(x_)^(n_.))^(p_), x_Symbol] :> Simp[c^(n - 1)*(c*x)^(m - n +
1)*((a*x^j + b*x^n)^(p + 1)/(b*(m + n*p + 1))), x] - Dist[a*c^(n - j)*((m + j*p - n + j + 1)/(b*(m + n*p + 1))
), Int[(c*x)^(m - (n - j))*(a*x^j + b*x^n)^p, x], x] /; FreeQ[{a, b, c, m, p}, x] &&  !IntegerQ[p] && LtQ[0, j
, n] && (IntegersQ[j, n] || GtQ[c, 0]) && GtQ[m + j*p + 1 - n + j, 0] && NeQ[m + n*p + 1, 0]

Rule 2057

Int[((c_.)*(x_))^(m_.)*((a_.)*(x_)^(j_.) + (b_.)*(x_)^(n_.))^(p_), x_Symbol] :> Dist[c^IntPart[m]*(c*x)^FracPa
rt[m]*((a*x^j + b*x^n)^FracPart[p]/(x^(FracPart[m] + j*FracPart[p])*(a + b*x^(n - j))^FracPart[p])), Int[x^(m
+ j*p)*(a + b*x^(n - j))^p, x], x] /; FreeQ[{a, b, c, j, m, n, p}, x] &&  !IntegerQ[p] && NeQ[n, j] && PosQ[n
- j]

Rubi steps \begin{align*} \text {integral}& = \frac {1}{9} x^8 \sqrt [4]{-x+x^4}-\frac {1}{12} \int \frac {x^8}{\left (-x+x^4\right )^{3/4}} \, dx \\ & = -\frac {1}{72} x^5 \sqrt [4]{-x+x^4}+\frac {1}{9} x^8 \sqrt [4]{-x+x^4}-\frac {7}{96} \int \frac {x^5}{\left (-x+x^4\right )^{3/4}} \, dx \\ & = -\frac {7}{288} x^2 \sqrt [4]{-x+x^4}-\frac {1}{72} x^5 \sqrt [4]{-x+x^4}+\frac {1}{9} x^8 \sqrt [4]{-x+x^4}-\frac {7}{128} \int \frac {x^2}{\left (-x+x^4\right )^{3/4}} \, dx \\ & = -\frac {7}{288} x^2 \sqrt [4]{-x+x^4}-\frac {1}{72} x^5 \sqrt [4]{-x+x^4}+\frac {1}{9} x^8 \sqrt [4]{-x+x^4}-\frac {\left (7 x^{3/4} \left (-1+x^3\right )^{3/4}\right ) \int \frac {x^{5/4}}{\left (-1+x^3\right )^{3/4}} \, dx}{128 \left (-x+x^4\right )^{3/4}} \\ & = -\frac {7}{288} x^2 \sqrt [4]{-x+x^4}-\frac {1}{72} x^5 \sqrt [4]{-x+x^4}+\frac {1}{9} x^8 \sqrt [4]{-x+x^4}-\frac {\left (7 x^{3/4} \left (-1+x^3\right )^{3/4}\right ) \text {Subst}\left (\int \frac {x^8}{\left (-1+x^{12}\right )^{3/4}} \, dx,x,\sqrt [4]{x}\right )}{32 \left (-x+x^4\right )^{3/4}} \\ & = -\frac {7}{288} x^2 \sqrt [4]{-x+x^4}-\frac {1}{72} x^5 \sqrt [4]{-x+x^4}+\frac {1}{9} x^8 \sqrt [4]{-x+x^4}-\frac {\left (7 x^{3/4} \left (-1+x^3\right )^{3/4}\right ) \text {Subst}\left (\int \frac {x^2}{\left (-1+x^4\right )^{3/4}} \, dx,x,x^{3/4}\right )}{96 \left (-x+x^4\right )^{3/4}} \\ & = -\frac {7}{288} x^2 \sqrt [4]{-x+x^4}-\frac {1}{72} x^5 \sqrt [4]{-x+x^4}+\frac {1}{9} x^8 \sqrt [4]{-x+x^4}-\frac {\left (7 x^{3/4} \left (-1+x^3\right )^{3/4}\right ) \text {Subst}\left (\int \frac {x^2}{1-x^4} \, dx,x,\frac {x^{3/4}}{\sqrt [4]{-1+x^3}}\right )}{96 \left (-x+x^4\right )^{3/4}} \\ & = -\frac {7}{288} x^2 \sqrt [4]{-x+x^4}-\frac {1}{72} x^5 \sqrt [4]{-x+x^4}+\frac {1}{9} x^8 \sqrt [4]{-x+x^4}-\frac {\left (7 x^{3/4} \left (-1+x^3\right )^{3/4}\right ) \text {Subst}\left (\int \frac {1}{1-x^2} \, dx,x,\frac {x^{3/4}}{\sqrt [4]{-1+x^3}}\right )}{192 \left (-x+x^4\right )^{3/4}}+\frac {\left (7 x^{3/4} \left (-1+x^3\right )^{3/4}\right ) \text {Subst}\left (\int \frac {1}{1+x^2} \, dx,x,\frac {x^{3/4}}{\sqrt [4]{-1+x^3}}\right )}{192 \left (-x+x^4\right )^{3/4}} \\ & = -\frac {7}{288} x^2 \sqrt [4]{-x+x^4}-\frac {1}{72} x^5 \sqrt [4]{-x+x^4}+\frac {1}{9} x^8 \sqrt [4]{-x+x^4}+\frac {7 x^{3/4} \left (-1+x^3\right )^{3/4} \arctan \left (\frac {x^{3/4}}{\sqrt [4]{-1+x^3}}\right )}{192 \left (-x+x^4\right )^{3/4}}-\frac {7 x^{3/4} \left (-1+x^3\right )^{3/4} \text {arctanh}\left (\frac {x^{3/4}}{\sqrt [4]{-1+x^3}}\right )}{192 \left (-x+x^4\right )^{3/4}} \\ \end{align*}

Mathematica [C] (verified)

Result contains higher order function than in optimal. Order 5 vs. order 3 in optimal.

Time = 10.02 (sec) , antiderivative size = 69, normalized size of antiderivative = 1.01 \[ \int x^7 \sqrt [4]{-x+x^4} \, dx=\frac {x^2 \sqrt [4]{x \left (-1+x^3\right )} \left (\sqrt [4]{1-x^3} \left (-7-x^3+8 x^6\right )+7 \operatorname {Hypergeometric2F1}\left (-\frac {1}{4},\frac {3}{4},\frac {7}{4},x^3\right )\right )}{72 \sqrt [4]{1-x^3}} \]

[In]

Integrate[x^7*(-x + x^4)^(1/4),x]

[Out]

(x^2*(x*(-1 + x^3))^(1/4)*((1 - x^3)^(1/4)*(-7 - x^3 + 8*x^6) + 7*Hypergeometric2F1[-1/4, 3/4, 7/4, x^3]))/(72
*(1 - x^3)^(1/4))

Maple [C] (warning: unable to verify)

Result contains higher order function than in optimal. Order 9 vs. order 3.

Time = 4.48 (sec) , antiderivative size = 33, normalized size of antiderivative = 0.49

method result size
meijerg \(\frac {4 \operatorname {signum}\left (x^{3}-1\right )^{\frac {1}{4}} x^{\frac {33}{4}} \operatorname {hypergeom}\left (\left [-\frac {1}{4}, \frac {11}{4}\right ], \left [\frac {15}{4}\right ], x^{3}\right )}{33 {\left (-\operatorname {signum}\left (x^{3}-1\right )\right )}^{\frac {1}{4}}}\) \(33\)
pseudoelliptic \(-\frac {x^{3} \left (\left (-128 x^{8}+16 x^{5}+28 x^{2}\right ) \left (x^{4}-x \right )^{\frac {1}{4}}+42 \arctan \left (\frac {\left (x^{4}-x \right )^{\frac {1}{4}}}{x}\right )-21 \ln \left (\frac {\left (x^{4}-x \right )^{\frac {1}{4}}-x}{x}\right )+21 \ln \left (\frac {\left (x^{4}-x \right )^{\frac {1}{4}}+x}{x}\right )\right )}{1152 {\left (-\left (x^{4}-x \right )^{\frac {1}{4}}+x \right )}^{3} \left (x^{2}+\sqrt {x^{4}-x}\right )^{3} {\left (\left (x^{4}-x \right )^{\frac {1}{4}}+x \right )}^{3}}\) \(130\)
trager \(\frac {x^{2} \left (32 x^{6}-4 x^{3}-7\right ) \left (x^{4}-x \right )^{\frac {1}{4}}}{288}+\frac {7 \ln \left (-2 \left (x^{4}-x \right )^{\frac {3}{4}}+2 x \sqrt {x^{4}-x}-2 x^{2} \left (x^{4}-x \right )^{\frac {1}{4}}+2 x^{3}-1\right )}{384}+\frac {7 \operatorname {RootOf}\left (\textit {\_Z}^{2}+1\right ) \ln \left (2 \sqrt {x^{4}-x}\, \operatorname {RootOf}\left (\textit {\_Z}^{2}+1\right ) x -2 \operatorname {RootOf}\left (\textit {\_Z}^{2}+1\right ) x^{3}-2 \left (x^{4}-x \right )^{\frac {3}{4}}+2 x^{2} \left (x^{4}-x \right )^{\frac {1}{4}}+\operatorname {RootOf}\left (\textit {\_Z}^{2}+1\right )\right )}{384}\) \(145\)
risch \(\frac {x^{2} \left (32 x^{6}-4 x^{3}-7\right ) {\left (x \left (x^{3}-1\right )\right )}^{\frac {1}{4}}}{288}+\frac {\left (-\frac {7 \ln \left (\frac {2 x^{9}+2 \left (x^{12}-3 x^{9}+3 x^{6}-x^{3}\right )^{\frac {1}{4}} x^{6}-5 x^{6}+2 \sqrt {x^{12}-3 x^{9}+3 x^{6}-x^{3}}\, x^{3}-4 \left (x^{12}-3 x^{9}+3 x^{6}-x^{3}\right )^{\frac {1}{4}} x^{3}+2 \left (x^{12}-3 x^{9}+3 x^{6}-x^{3}\right )^{\frac {3}{4}}+4 x^{3}-2 \sqrt {x^{12}-3 x^{9}+3 x^{6}-x^{3}}+2 \left (x^{12}-3 x^{9}+3 x^{6}-x^{3}\right )^{\frac {1}{4}}-1}{\left (x^{2}+x +1\right )^{2} \left (x -1\right )^{2}}\right )}{384}+\frac {7 \operatorname {RootOf}\left (\textit {\_Z}^{2}+1\right ) \ln \left (-\frac {2 x^{9}-2 \operatorname {RootOf}\left (\textit {\_Z}^{2}+1\right ) \left (x^{12}-3 x^{9}+3 x^{6}-x^{3}\right )^{\frac {1}{4}} x^{6}-5 x^{6}+4 \operatorname {RootOf}\left (\textit {\_Z}^{2}+1\right ) \left (x^{12}-3 x^{9}+3 x^{6}-x^{3}\right )^{\frac {1}{4}} x^{3}-2 \sqrt {x^{12}-3 x^{9}+3 x^{6}-x^{3}}\, x^{3}+2 \operatorname {RootOf}\left (\textit {\_Z}^{2}+1\right ) \left (x^{12}-3 x^{9}+3 x^{6}-x^{3}\right )^{\frac {3}{4}}+4 x^{3}-2 \operatorname {RootOf}\left (\textit {\_Z}^{2}+1\right ) \left (x^{12}-3 x^{9}+3 x^{6}-x^{3}\right )^{\frac {1}{4}}+2 \sqrt {x^{12}-3 x^{9}+3 x^{6}-x^{3}}-1}{\left (x^{2}+x +1\right )^{2} \left (x -1\right )^{2}}\right )}{384}\right ) {\left (x \left (x^{3}-1\right )\right )}^{\frac {1}{4}} \left (x^{3} \left (x^{3}-1\right )^{3}\right )^{\frac {1}{4}}}{x \left (x^{3}-1\right )}\) \(455\)

[In]

int(x^7*(x^4-x)^(1/4),x,method=_RETURNVERBOSE)

[Out]

4/33*signum(x^3-1)^(1/4)/(-signum(x^3-1))^(1/4)*x^(33/4)*hypergeom([-1/4,11/4],[15/4],x^3)

Fricas [A] (verification not implemented)

none

Time = 1.32 (sec) , antiderivative size = 104, normalized size of antiderivative = 1.53 \[ \int x^7 \sqrt [4]{-x+x^4} \, dx=\frac {1}{288} \, {\left (32 \, x^{8} - 4 \, x^{5} - 7 \, x^{2}\right )} {\left (x^{4} - x\right )}^{\frac {1}{4}} - \frac {7}{384} \, \arctan \left (2 \, {\left (x^{4} - x\right )}^{\frac {1}{4}} x^{2} + 2 \, {\left (x^{4} - x\right )}^{\frac {3}{4}}\right ) + \frac {7}{384} \, \log \left (2 \, x^{3} - 2 \, {\left (x^{4} - x\right )}^{\frac {1}{4}} x^{2} + 2 \, \sqrt {x^{4} - x} x - 2 \, {\left (x^{4} - x\right )}^{\frac {3}{4}} - 1\right ) \]

[In]

integrate(x^7*(x^4-x)^(1/4),x, algorithm="fricas")

[Out]

1/288*(32*x^8 - 4*x^5 - 7*x^2)*(x^4 - x)^(1/4) - 7/384*arctan(2*(x^4 - x)^(1/4)*x^2 + 2*(x^4 - x)^(3/4)) + 7/3
84*log(2*x^3 - 2*(x^4 - x)^(1/4)*x^2 + 2*sqrt(x^4 - x)*x - 2*(x^4 - x)^(3/4) - 1)

Sympy [F]

\[ \int x^7 \sqrt [4]{-x+x^4} \, dx=\int x^{7} \sqrt [4]{x \left (x - 1\right ) \left (x^{2} + x + 1\right )}\, dx \]

[In]

integrate(x**7*(x**4-x)**(1/4),x)

[Out]

Integral(x**7*(x*(x - 1)*(x**2 + x + 1))**(1/4), x)

Maxima [F]

\[ \int x^7 \sqrt [4]{-x+x^4} \, dx=\int { {\left (x^{4} - x\right )}^{\frac {1}{4}} x^{7} \,d x } \]

[In]

integrate(x^7*(x^4-x)^(1/4),x, algorithm="maxima")

[Out]

integrate((x^4 - x)^(1/4)*x^7, x)

Giac [A] (verification not implemented)

none

Time = 0.28 (sec) , antiderivative size = 88, normalized size of antiderivative = 1.29 \[ \int x^7 \sqrt [4]{-x+x^4} \, dx=-\frac {1}{288} \, {\left (7 \, {\left (\frac {1}{x^{3}} - 1\right )}^{2} {\left (-\frac {1}{x^{3}} + 1\right )}^{\frac {1}{4}} - 18 \, {\left (-\frac {1}{x^{3}} + 1\right )}^{\frac {5}{4}} - 21 \, {\left (-\frac {1}{x^{3}} + 1\right )}^{\frac {1}{4}}\right )} x^{9} - \frac {7}{192} \, \arctan \left ({\left (-\frac {1}{x^{3}} + 1\right )}^{\frac {1}{4}}\right ) - \frac {7}{384} \, \log \left ({\left (-\frac {1}{x^{3}} + 1\right )}^{\frac {1}{4}} + 1\right ) + \frac {7}{384} \, \log \left ({\left | {\left (-\frac {1}{x^{3}} + 1\right )}^{\frac {1}{4}} - 1 \right |}\right ) \]

[In]

integrate(x^7*(x^4-x)^(1/4),x, algorithm="giac")

[Out]

-1/288*(7*(1/x^3 - 1)^2*(-1/x^3 + 1)^(1/4) - 18*(-1/x^3 + 1)^(5/4) - 21*(-1/x^3 + 1)^(1/4))*x^9 - 7/192*arctan
((-1/x^3 + 1)^(1/4)) - 7/384*log((-1/x^3 + 1)^(1/4) + 1) + 7/384*log(abs((-1/x^3 + 1)^(1/4) - 1))

Mupad [F(-1)]

Timed out. \[ \int x^7 \sqrt [4]{-x+x^4} \, dx=\int x^7\,{\left (x^4-x\right )}^{1/4} \,d x \]

[In]

int(x^7*(x^4 - x)^(1/4),x)

[Out]

int(x^7*(x^4 - x)^(1/4), x)