\(\int \frac {(-3+x^4) (1+x^4) (1+x^3+x^4)}{x^6 (1-x^3+x^4) \sqrt [4]{x+x^5}} \, dx\) [915]

   Optimal result
   Rubi [F]
   Mathematica [F]
   Maple [A] (verified)
   Fricas [B] (verification not implemented)
   Sympy [F(-1)]
   Maxima [F]
   Giac [F]
   Mupad [F(-1)]

Optimal result

Integrand size = 43, antiderivative size = 69 \[ \int \frac {\left (-3+x^4\right ) \left (1+x^4\right ) \left (1+x^3+x^4\right )}{x^6 \left (1-x^3+x^4\right ) \sqrt [4]{x+x^5}} \, dx=\frac {4 \left (3+14 x^3+3 x^4\right ) \left (x+x^5\right )^{3/4}}{21 x^6}-4 \arctan \left (\frac {\left (x+x^5\right )^{3/4}}{1+x^4}\right )-4 \text {arctanh}\left (\frac {\left (x+x^5\right )^{3/4}}{1+x^4}\right ) \]

[Out]

4/21*(3*x^4+14*x^3+3)*(x^5+x)^(3/4)/x^6-4*arctan((x^5+x)^(3/4)/(x^4+1))-4*arctanh((x^5+x)^(3/4)/(x^4+1))

Rubi [F]

\[ \int \frac {\left (-3+x^4\right ) \left (1+x^4\right ) \left (1+x^3+x^4\right )}{x^6 \left (1-x^3+x^4\right ) \sqrt [4]{x+x^5}} \, dx=\int \frac {\left (-3+x^4\right ) \left (1+x^4\right ) \left (1+x^3+x^4\right )}{x^6 \left (1-x^3+x^4\right ) \sqrt [4]{x+x^5}} \, dx \]

[In]

Int[((-3 + x^4)*(1 + x^4)*(1 + x^3 + x^4))/(x^6*(1 - x^3 + x^4)*(x + x^5)^(1/4)),x]

[Out]

(4*(1 + x^4)^(1/4)*Hypergeometric2F1[-21/16, -3/4, -5/16, -x^4])/(7*x^5*(x + x^5)^(1/4)) + (8*(1 + x^4)^(1/4)*
Hypergeometric2F1[-3/4, -9/16, 7/16, -x^4])/(3*x^2*(x + x^5)^(1/4)) - (4*(1 + x^4)^(1/4)*Hypergeometric2F1[-3/
4, -5/16, 11/16, -x^4])/(5*x*(x + x^5)^(1/4)) - (24*x^(1/4)*(1 + x^4)^(1/4)*Defer[Subst][Defer[Int][(x^2*(1 +
x^16)^(3/4))/(1 - x^12 + x^16), x], x, x^(1/4)])/(x + x^5)^(1/4) + (32*x^(1/4)*(1 + x^4)^(1/4)*Defer[Subst][De
fer[Int][(x^6*(1 + x^16)^(3/4))/(1 - x^12 + x^16), x], x, x^(1/4)])/(x + x^5)^(1/4)

Rubi steps \begin{align*} \text {integral}& = \frac {\left (\sqrt [4]{x} \sqrt [4]{1+x^4}\right ) \int \frac {\left (-3+x^4\right ) \left (1+x^4\right )^{3/4} \left (1+x^3+x^4\right )}{x^{25/4} \left (1-x^3+x^4\right )} \, dx}{\sqrt [4]{x+x^5}} \\ & = \frac {\left (4 \sqrt [4]{x} \sqrt [4]{1+x^4}\right ) \text {Subst}\left (\int \frac {\left (-3+x^{16}\right ) \left (1+x^{16}\right )^{3/4} \left (1+x^{12}+x^{16}\right )}{x^{22} \left (1-x^{12}+x^{16}\right )} \, dx,x,\sqrt [4]{x}\right )}{\sqrt [4]{x+x^5}} \\ & = \frac {\left (4 \sqrt [4]{x} \sqrt [4]{1+x^4}\right ) \text {Subst}\left (\int \left (-\frac {3 \left (1+x^{16}\right )^{3/4}}{x^{22}}-\frac {6 \left (1+x^{16}\right )^{3/4}}{x^{10}}+\frac {\left (1+x^{16}\right )^{3/4}}{x^6}+\frac {2 x^2 \left (-3+4 x^4\right ) \left (1+x^{16}\right )^{3/4}}{1-x^{12}+x^{16}}\right ) \, dx,x,\sqrt [4]{x}\right )}{\sqrt [4]{x+x^5}} \\ & = \frac {\left (4 \sqrt [4]{x} \sqrt [4]{1+x^4}\right ) \text {Subst}\left (\int \frac {\left (1+x^{16}\right )^{3/4}}{x^6} \, dx,x,\sqrt [4]{x}\right )}{\sqrt [4]{x+x^5}}+\frac {\left (8 \sqrt [4]{x} \sqrt [4]{1+x^4}\right ) \text {Subst}\left (\int \frac {x^2 \left (-3+4 x^4\right ) \left (1+x^{16}\right )^{3/4}}{1-x^{12}+x^{16}} \, dx,x,\sqrt [4]{x}\right )}{\sqrt [4]{x+x^5}}-\frac {\left (12 \sqrt [4]{x} \sqrt [4]{1+x^4}\right ) \text {Subst}\left (\int \frac {\left (1+x^{16}\right )^{3/4}}{x^{22}} \, dx,x,\sqrt [4]{x}\right )}{\sqrt [4]{x+x^5}}-\frac {\left (24 \sqrt [4]{x} \sqrt [4]{1+x^4}\right ) \text {Subst}\left (\int \frac {\left (1+x^{16}\right )^{3/4}}{x^{10}} \, dx,x,\sqrt [4]{x}\right )}{\sqrt [4]{x+x^5}} \\ & = \frac {4 \sqrt [4]{1+x^4} \operatorname {Hypergeometric2F1}\left (-\frac {21}{16},-\frac {3}{4},-\frac {5}{16},-x^4\right )}{7 x^5 \sqrt [4]{x+x^5}}+\frac {8 \sqrt [4]{1+x^4} \operatorname {Hypergeometric2F1}\left (-\frac {3}{4},-\frac {9}{16},\frac {7}{16},-x^4\right )}{3 x^2 \sqrt [4]{x+x^5}}-\frac {4 \sqrt [4]{1+x^4} \operatorname {Hypergeometric2F1}\left (-\frac {3}{4},-\frac {5}{16},\frac {11}{16},-x^4\right )}{5 x \sqrt [4]{x+x^5}}+\frac {\left (8 \sqrt [4]{x} \sqrt [4]{1+x^4}\right ) \text {Subst}\left (\int \left (-\frac {3 x^2 \left (1+x^{16}\right )^{3/4}}{1-x^{12}+x^{16}}+\frac {4 x^6 \left (1+x^{16}\right )^{3/4}}{1-x^{12}+x^{16}}\right ) \, dx,x,\sqrt [4]{x}\right )}{\sqrt [4]{x+x^5}} \\ & = \frac {4 \sqrt [4]{1+x^4} \operatorname {Hypergeometric2F1}\left (-\frac {21}{16},-\frac {3}{4},-\frac {5}{16},-x^4\right )}{7 x^5 \sqrt [4]{x+x^5}}+\frac {8 \sqrt [4]{1+x^4} \operatorname {Hypergeometric2F1}\left (-\frac {3}{4},-\frac {9}{16},\frac {7}{16},-x^4\right )}{3 x^2 \sqrt [4]{x+x^5}}-\frac {4 \sqrt [4]{1+x^4} \operatorname {Hypergeometric2F1}\left (-\frac {3}{4},-\frac {5}{16},\frac {11}{16},-x^4\right )}{5 x \sqrt [4]{x+x^5}}-\frac {\left (24 \sqrt [4]{x} \sqrt [4]{1+x^4}\right ) \text {Subst}\left (\int \frac {x^2 \left (1+x^{16}\right )^{3/4}}{1-x^{12}+x^{16}} \, dx,x,\sqrt [4]{x}\right )}{\sqrt [4]{x+x^5}}+\frac {\left (32 \sqrt [4]{x} \sqrt [4]{1+x^4}\right ) \text {Subst}\left (\int \frac {x^6 \left (1+x^{16}\right )^{3/4}}{1-x^{12}+x^{16}} \, dx,x,\sqrt [4]{x}\right )}{\sqrt [4]{x+x^5}} \\ \end{align*}

Mathematica [F]

\[ \int \frac {\left (-3+x^4\right ) \left (1+x^4\right ) \left (1+x^3+x^4\right )}{x^6 \left (1-x^3+x^4\right ) \sqrt [4]{x+x^5}} \, dx=\int \frac {\left (-3+x^4\right ) \left (1+x^4\right ) \left (1+x^3+x^4\right )}{x^6 \left (1-x^3+x^4\right ) \sqrt [4]{x+x^5}} \, dx \]

[In]

Integrate[((-3 + x^4)*(1 + x^4)*(1 + x^3 + x^4))/(x^6*(1 - x^3 + x^4)*(x + x^5)^(1/4)),x]

[Out]

Integrate[((-3 + x^4)*(1 + x^4)*(1 + x^3 + x^4))/(x^6*(1 - x^3 + x^4)*(x + x^5)^(1/4)), x]

Maple [A] (verified)

Time = 4.56 (sec) , antiderivative size = 91, normalized size of antiderivative = 1.32

method result size
pseudoelliptic \(\frac {2 \ln \left (\frac {{\left (x \left (x^{4}+1\right )\right )}^{\frac {1}{4}}-x}{x}\right ) x^{6}-2 \ln \left (\frac {{\left (x \left (x^{4}+1\right )\right )}^{\frac {1}{4}}+x}{x}\right ) x^{6}+4 \arctan \left (\frac {{\left (x \left (x^{4}+1\right )\right )}^{\frac {1}{4}}}{x}\right ) x^{6}+\frac {4 {\left (x \left (x^{4}+1\right )\right )}^{\frac {3}{4}} \left (x^{4}+\frac {14}{3} x^{3}+1\right )}{7}}{x^{6}}\) \(91\)
trager \(\frac {4 \left (3 x^{4}+14 x^{3}+3\right ) \left (x^{5}+x \right )^{\frac {3}{4}}}{21 x^{6}}+2 \ln \left (-\frac {-x^{4}+2 \left (x^{5}+x \right )^{\frac {3}{4}}-2 x \sqrt {x^{5}+x}+2 \left (x^{5}+x \right )^{\frac {1}{4}} x^{2}-x^{3}-1}{x^{4}-x^{3}+1}\right )+2 \operatorname {RootOf}\left (\textit {\_Z}^{2}+1\right ) \ln \left (-\frac {-\operatorname {RootOf}\left (\textit {\_Z}^{2}+1\right ) x^{4}+2 \operatorname {RootOf}\left (\textit {\_Z}^{2}+1\right ) \sqrt {x^{5}+x}\, x -\operatorname {RootOf}\left (\textit {\_Z}^{2}+1\right ) x^{3}+2 \left (x^{5}+x \right )^{\frac {3}{4}}-2 \left (x^{5}+x \right )^{\frac {1}{4}} x^{2}-\operatorname {RootOf}\left (\textit {\_Z}^{2}+1\right )}{x^{4}-x^{3}+1}\right )\) \(177\)
risch \(\frac {\frac {4}{7} x^{8}+\frac {8}{7} x^{4}+\frac {4}{7}+\frac {8}{3} x^{7}+\frac {8}{3} x^{3}}{x^{5} {\left (x \left (x^{4}+1\right )\right )}^{\frac {1}{4}}}-2 \ln \left (\frac {x^{4}+2 \left (x^{5}+x \right )^{\frac {3}{4}}+2 x \sqrt {x^{5}+x}+2 \left (x^{5}+x \right )^{\frac {1}{4}} x^{2}+x^{3}+1}{x^{4}-x^{3}+1}\right )+2 \operatorname {RootOf}\left (\textit {\_Z}^{2}+1\right ) \ln \left (\frac {-\operatorname {RootOf}\left (\textit {\_Z}^{2}+1\right ) x^{4}+2 \operatorname {RootOf}\left (\textit {\_Z}^{2}+1\right ) \sqrt {x^{5}+x}\, x -\operatorname {RootOf}\left (\textit {\_Z}^{2}+1\right ) x^{3}+2 \left (x^{5}+x \right )^{\frac {3}{4}}-2 \left (x^{5}+x \right )^{\frac {1}{4}} x^{2}-\operatorname {RootOf}\left (\textit {\_Z}^{2}+1\right )}{x^{4}-x^{3}+1}\right )\) \(183\)

[In]

int((x^4-3)*(x^4+1)*(x^4+x^3+1)/x^6/(x^4-x^3+1)/(x^5+x)^(1/4),x,method=_RETURNVERBOSE)

[Out]

2/7*(7*ln(((x*(x^4+1))^(1/4)-x)/x)*x^6-7*ln(((x*(x^4+1))^(1/4)+x)/x)*x^6+14*arctan((x*(x^4+1))^(1/4)/x)*x^6+2*
(x*(x^4+1))^(3/4)*(x^4+14/3*x^3+1))/x^6

Fricas [B] (verification not implemented)

Leaf count of result is larger than twice the leaf count of optimal. 125 vs. \(2 (61) = 122\).

Time = 25.54 (sec) , antiderivative size = 125, normalized size of antiderivative = 1.81 \[ \int \frac {\left (-3+x^4\right ) \left (1+x^4\right ) \left (1+x^3+x^4\right )}{x^6 \left (1-x^3+x^4\right ) \sqrt [4]{x+x^5}} \, dx=-\frac {2 \, {\left (21 \, x^{6} \arctan \left (\frac {{\left (x^{5} + x\right )}^{\frac {3}{4}} x - {\left (x^{5} + x\right )}^{\frac {1}{4}} {\left (x^{4} + 1\right )}}{2 \, {\left (x^{5} + x\right )}}\right ) - 21 \, x^{6} \log \left (-\frac {x^{4} + x^{3} - 2 \, {\left (x^{5} + x\right )}^{\frac {1}{4}} x^{2} + 2 \, \sqrt {x^{5} + x} x - 2 \, {\left (x^{5} + x\right )}^{\frac {3}{4}} + 1}{x^{4} - x^{3} + 1}\right ) - 2 \, {\left (x^{5} + x\right )}^{\frac {3}{4}} {\left (3 \, x^{4} + 14 \, x^{3} + 3\right )}\right )}}{21 \, x^{6}} \]

[In]

integrate((x^4-3)*(x^4+1)*(x^4+x^3+1)/x^6/(x^4-x^3+1)/(x^5+x)^(1/4),x, algorithm="fricas")

[Out]

-2/21*(21*x^6*arctan(1/2*((x^5 + x)^(3/4)*x - (x^5 + x)^(1/4)*(x^4 + 1))/(x^5 + x)) - 21*x^6*log(-(x^4 + x^3 -
 2*(x^5 + x)^(1/4)*x^2 + 2*sqrt(x^5 + x)*x - 2*(x^5 + x)^(3/4) + 1)/(x^4 - x^3 + 1)) - 2*(x^5 + x)^(3/4)*(3*x^
4 + 14*x^3 + 3))/x^6

Sympy [F(-1)]

Timed out. \[ \int \frac {\left (-3+x^4\right ) \left (1+x^4\right ) \left (1+x^3+x^4\right )}{x^6 \left (1-x^3+x^4\right ) \sqrt [4]{x+x^5}} \, dx=\text {Timed out} \]

[In]

integrate((x**4-3)*(x**4+1)*(x**4+x**3+1)/x**6/(x**4-x**3+1)/(x**5+x)**(1/4),x)

[Out]

Timed out

Maxima [F]

\[ \int \frac {\left (-3+x^4\right ) \left (1+x^4\right ) \left (1+x^3+x^4\right )}{x^6 \left (1-x^3+x^4\right ) \sqrt [4]{x+x^5}} \, dx=\int { \frac {{\left (x^{4} + x^{3} + 1\right )} {\left (x^{4} + 1\right )} {\left (x^{4} - 3\right )}}{{\left (x^{5} + x\right )}^{\frac {1}{4}} {\left (x^{4} - x^{3} + 1\right )} x^{6}} \,d x } \]

[In]

integrate((x^4-3)*(x^4+1)*(x^4+x^3+1)/x^6/(x^4-x^3+1)/(x^5+x)^(1/4),x, algorithm="maxima")

[Out]

integrate((x^4 + x^3 + 1)*(x^4 + 1)*(x^4 - 3)/((x^5 + x)^(1/4)*(x^4 - x^3 + 1)*x^6), x)

Giac [F]

\[ \int \frac {\left (-3+x^4\right ) \left (1+x^4\right ) \left (1+x^3+x^4\right )}{x^6 \left (1-x^3+x^4\right ) \sqrt [4]{x+x^5}} \, dx=\int { \frac {{\left (x^{4} + x^{3} + 1\right )} {\left (x^{4} + 1\right )} {\left (x^{4} - 3\right )}}{{\left (x^{5} + x\right )}^{\frac {1}{4}} {\left (x^{4} - x^{3} + 1\right )} x^{6}} \,d x } \]

[In]

integrate((x^4-3)*(x^4+1)*(x^4+x^3+1)/x^6/(x^4-x^3+1)/(x^5+x)^(1/4),x, algorithm="giac")

[Out]

integrate((x^4 + x^3 + 1)*(x^4 + 1)*(x^4 - 3)/((x^5 + x)^(1/4)*(x^4 - x^3 + 1)*x^6), x)

Mupad [F(-1)]

Timed out. \[ \int \frac {\left (-3+x^4\right ) \left (1+x^4\right ) \left (1+x^3+x^4\right )}{x^6 \left (1-x^3+x^4\right ) \sqrt [4]{x+x^5}} \, dx=\int \frac {\left (x^4+1\right )\,\left (x^4-3\right )\,\left (x^4+x^3+1\right )}{x^6\,{\left (x^5+x\right )}^{1/4}\,\left (x^4-x^3+1\right )} \,d x \]

[In]

int(((x^4 + 1)*(x^4 - 3)*(x^3 + x^4 + 1))/(x^6*(x + x^5)^(1/4)*(x^4 - x^3 + 1)),x)

[Out]

int(((x^4 + 1)*(x^4 - 3)*(x^3 + x^4 + 1))/(x^6*(x + x^5)^(1/4)*(x^4 - x^3 + 1)), x)