\(\int \frac {1+3 x+3 x^4}{x \sqrt [4]{1+x^4}} \, dx\) [918]

   Optimal result
   Rubi [A] (verified)
   Mathematica [A] (verified)
   Maple [C] (verified)
   Fricas [B] (verification not implemented)
   Sympy [C] (verification not implemented)
   Maxima [A] (verification not implemented)
   Giac [F]
   Mupad [B] (verification not implemented)

Optimal result

Integrand size = 23, antiderivative size = 70 \[ \int \frac {1+3 x+3 x^4}{x \sqrt [4]{1+x^4}} \, dx=\left (1+x^4\right )^{3/4}+\frac {3}{2} \arctan \left (\frac {x}{\sqrt [4]{1+x^4}}\right )+\frac {1}{2} \arctan \left (\sqrt [4]{1+x^4}\right )+\frac {3}{2} \text {arctanh}\left (\frac {x}{\sqrt [4]{1+x^4}}\right )-\frac {1}{2} \text {arctanh}\left (\sqrt [4]{1+x^4}\right ) \]

[Out]

(x^4+1)^(3/4)+3/2*arctan(x/(x^4+1)^(1/4))+1/2*arctan((x^4+1)^(1/4))+3/2*arctanh(x/(x^4+1)^(1/4))-1/2*arctanh((
x^4+1)^(1/4))

Rubi [A] (verified)

Time = 0.04 (sec) , antiderivative size = 70, normalized size of antiderivative = 1.00, number of steps used = 12, number of rules used = 9, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.391, Rules used = {1847, 246, 218, 212, 209, 457, 81, 65, 304} \[ \int \frac {1+3 x+3 x^4}{x \sqrt [4]{1+x^4}} \, dx=\frac {3}{2} \arctan \left (\frac {x}{\sqrt [4]{x^4+1}}\right )+\frac {1}{2} \arctan \left (\sqrt [4]{x^4+1}\right )+\frac {3}{2} \text {arctanh}\left (\frac {x}{\sqrt [4]{x^4+1}}\right )-\frac {1}{2} \text {arctanh}\left (\sqrt [4]{x^4+1}\right )+\left (x^4+1\right )^{3/4} \]

[In]

Int[(1 + 3*x + 3*x^4)/(x*(1 + x^4)^(1/4)),x]

[Out]

(1 + x^4)^(3/4) + (3*ArcTan[x/(1 + x^4)^(1/4)])/2 + ArcTan[(1 + x^4)^(1/4)]/2 + (3*ArcTanh[x/(1 + x^4)^(1/4)])
/2 - ArcTanh[(1 + x^4)^(1/4)]/2

Rule 65

Int[((a_.) + (b_.)*(x_))^(m_)*((c_.) + (d_.)*(x_))^(n_), x_Symbol] :> With[{p = Denominator[m]}, Dist[p/b, Sub
st[Int[x^(p*(m + 1) - 1)*(c - a*(d/b) + d*(x^p/b))^n, x], x, (a + b*x)^(1/p)], x]] /; FreeQ[{a, b, c, d}, x] &
& NeQ[b*c - a*d, 0] && LtQ[-1, m, 0] && LeQ[-1, n, 0] && LeQ[Denominator[n], Denominator[m]] && IntLinearQ[a,
b, c, d, m, n, x]

Rule 81

Int[((a_.) + (b_.)*(x_))*((c_.) + (d_.)*(x_))^(n_.)*((e_.) + (f_.)*(x_))^(p_.), x_Symbol] :> Simp[b*(c + d*x)^
(n + 1)*((e + f*x)^(p + 1)/(d*f*(n + p + 2))), x] + Dist[(a*d*f*(n + p + 2) - b*(d*e*(n + 1) + c*f*(p + 1)))/(
d*f*(n + p + 2)), Int[(c + d*x)^n*(e + f*x)^p, x], x] /; FreeQ[{a, b, c, d, e, f, n, p}, x] && NeQ[n + p + 2,
0]

Rule 209

Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> Simp[(1/(Rt[a, 2]*Rt[b, 2]))*ArcTan[Rt[b, 2]*(x/Rt[a, 2])], x] /;
 FreeQ[{a, b}, x] && PosQ[a/b] && (GtQ[a, 0] || GtQ[b, 0])

Rule 212

Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> Simp[(1/(Rt[a, 2]*Rt[-b, 2]))*ArcTanh[Rt[-b, 2]*(x/Rt[a, 2])], x]
 /; FreeQ[{a, b}, x] && NegQ[a/b] && (GtQ[a, 0] || LtQ[b, 0])

Rule 218

Int[((a_) + (b_.)*(x_)^4)^(-1), x_Symbol] :> With[{r = Numerator[Rt[-a/b, 2]], s = Denominator[Rt[-a/b, 2]]},
Dist[r/(2*a), Int[1/(r - s*x^2), x], x] + Dist[r/(2*a), Int[1/(r + s*x^2), x], x]] /; FreeQ[{a, b}, x] &&  !Gt
Q[a/b, 0]

Rule 246

Int[((a_) + (b_.)*(x_)^(n_))^(p_), x_Symbol] :> Dist[a^(p + 1/n), Subst[Int[1/(1 - b*x^n)^(p + 1/n + 1), x], x
, x/(a + b*x^n)^(1/n)], x] /; FreeQ[{a, b}, x] && IGtQ[n, 0] && LtQ[-1, p, 0] && NeQ[p, -2^(-1)] && IntegerQ[p
 + 1/n]

Rule 304

Int[(x_)^2/((a_) + (b_.)*(x_)^4), x_Symbol] :> With[{r = Numerator[Rt[-a/b, 2]], s = Denominator[Rt[-a/b, 2]]}
, Dist[s/(2*b), Int[1/(r + s*x^2), x], x] - Dist[s/(2*b), Int[1/(r - s*x^2), x], x]] /; FreeQ[{a, b}, x] &&  !
GtQ[a/b, 0]

Rule 457

Int[(x_)^(m_.)*((a_) + (b_.)*(x_)^(n_))^(p_.)*((c_) + (d_.)*(x_)^(n_))^(q_.), x_Symbol] :> Dist[1/n, Subst[Int
[x^(Simplify[(m + 1)/n] - 1)*(a + b*x)^p*(c + d*x)^q, x], x, x^n], x] /; FreeQ[{a, b, c, d, m, n, p, q}, x] &&
 NeQ[b*c - a*d, 0] && IntegerQ[Simplify[(m + 1)/n]]

Rule 1847

Int[(Pq_)*((c_.)*(x_))^(m_.)*((a_) + (b_.)*(x_)^(n_))^(p_), x_Symbol] :> Module[{q = Expon[Pq, x], j, k}, Int[
Sum[((c*x)^(m + j)/c^j)*Sum[Coeff[Pq, x, j + k*(n/2)]*x^(k*(n/2)), {k, 0, 2*((q - j)/n) + 1}]*(a + b*x^n)^p, {
j, 0, n/2 - 1}], x]] /; FreeQ[{a, b, c, m, p}, x] && PolyQ[Pq, x] && IGtQ[n/2, 0] &&  !PolyQ[Pq, x^(n/2)]

Rubi steps \begin{align*} \text {integral}& = \int \left (\frac {3}{\sqrt [4]{1+x^4}}+\frac {1+3 x^4}{x \sqrt [4]{1+x^4}}\right ) \, dx \\ & = 3 \int \frac {1}{\sqrt [4]{1+x^4}} \, dx+\int \frac {1+3 x^4}{x \sqrt [4]{1+x^4}} \, dx \\ & = \frac {1}{4} \text {Subst}\left (\int \frac {1+3 x}{x \sqrt [4]{1+x}} \, dx,x,x^4\right )+3 \text {Subst}\left (\int \frac {1}{1-x^4} \, dx,x,\frac {x}{\sqrt [4]{1+x^4}}\right ) \\ & = \left (1+x^4\right )^{3/4}+\frac {1}{4} \text {Subst}\left (\int \frac {1}{x \sqrt [4]{1+x}} \, dx,x,x^4\right )+\frac {3}{2} \text {Subst}\left (\int \frac {1}{1-x^2} \, dx,x,\frac {x}{\sqrt [4]{1+x^4}}\right )+\frac {3}{2} \text {Subst}\left (\int \frac {1}{1+x^2} \, dx,x,\frac {x}{\sqrt [4]{1+x^4}}\right ) \\ & = \left (1+x^4\right )^{3/4}+\frac {3}{2} \arctan \left (\frac {x}{\sqrt [4]{1+x^4}}\right )+\frac {3}{2} \text {arctanh}\left (\frac {x}{\sqrt [4]{1+x^4}}\right )+\text {Subst}\left (\int \frac {x^2}{-1+x^4} \, dx,x,\sqrt [4]{1+x^4}\right ) \\ & = \left (1+x^4\right )^{3/4}+\frac {3}{2} \arctan \left (\frac {x}{\sqrt [4]{1+x^4}}\right )+\frac {3}{2} \text {arctanh}\left (\frac {x}{\sqrt [4]{1+x^4}}\right )-\frac {1}{2} \text {Subst}\left (\int \frac {1}{1-x^2} \, dx,x,\sqrt [4]{1+x^4}\right )+\frac {1}{2} \text {Subst}\left (\int \frac {1}{1+x^2} \, dx,x,\sqrt [4]{1+x^4}\right ) \\ & = \left (1+x^4\right )^{3/4}+\frac {3}{2} \arctan \left (\frac {x}{\sqrt [4]{1+x^4}}\right )+\frac {1}{2} \arctan \left (\sqrt [4]{1+x^4}\right )+\frac {3}{2} \text {arctanh}\left (\frac {x}{\sqrt [4]{1+x^4}}\right )-\frac {1}{2} \text {arctanh}\left (\sqrt [4]{1+x^4}\right ) \\ \end{align*}

Mathematica [A] (verified)

Time = 5.44 (sec) , antiderivative size = 66, normalized size of antiderivative = 0.94 \[ \int \frac {1+3 x+3 x^4}{x \sqrt [4]{1+x^4}} \, dx=\frac {1}{2} \left (2 \left (1+x^4\right )^{3/4}+3 \arctan \left (\frac {x}{\sqrt [4]{1+x^4}}\right )+\arctan \left (\sqrt [4]{1+x^4}\right )+3 \text {arctanh}\left (\frac {x}{\sqrt [4]{1+x^4}}\right )-\text {arctanh}\left (\sqrt [4]{1+x^4}\right )\right ) \]

[In]

Integrate[(1 + 3*x + 3*x^4)/(x*(1 + x^4)^(1/4)),x]

[Out]

(2*(1 + x^4)^(3/4) + 3*ArcTan[x/(1 + x^4)^(1/4)] + ArcTan[(1 + x^4)^(1/4)] + 3*ArcTanh[x/(1 + x^4)^(1/4)] - Ar
cTanh[(1 + x^4)^(1/4)])/2

Maple [C] (verified)

Result contains higher order function than in optimal. Order 5 vs. order 3.

Time = 9.49 (sec) , antiderivative size = 90, normalized size of antiderivative = 1.29

method result size
meijerg \(\frac {\sqrt {2}\, \Gamma \left (\frac {3}{4}\right ) \left (-\frac {\pi \sqrt {2}\, x^{4} \operatorname {hypergeom}\left (\left [1, 1, \frac {5}{4}\right ], \left [2, 2\right ], -x^{4}\right )}{4 \Gamma \left (\frac {3}{4}\right )}+\frac {\left (-3 \ln \left (2\right )-\frac {\pi }{2}+4 \ln \left (x \right )\right ) \pi \sqrt {2}}{\Gamma \left (\frac {3}{4}\right )}\right )}{8 \pi }+\frac {3 x^{4} \operatorname {hypergeom}\left (\left [\frac {1}{4}, 1\right ], \left [2\right ], -x^{4}\right )}{4}+3 x \operatorname {hypergeom}\left (\left [\frac {1}{4}, \frac {1}{4}\right ], \left [\frac {5}{4}\right ], -x^{4}\right )\) \(90\)
trager \(\left (x^{4}+1\right )^{\frac {3}{4}}+\frac {\ln \left (-\frac {1-5 x^{2} \left (x^{4}+1\right )^{\frac {1}{4}}+5 \sqrt {x^{4}+1}\, x^{2}-3 x +9 x^{4}-8 x^{7}-4 x^{5}+4 x^{2}-7 x^{3}-\left (x^{4}+1\right )^{\frac {3}{4}}+\sqrt {x^{4}+1}-\left (x^{4}+1\right )^{\frac {1}{4}}+8 x^{8}+4 x^{6}-3 \sqrt {x^{4}+1}\, x +8 x^{7} \left (x^{4}+1\right )^{\frac {1}{4}}+4 x^{4} \sqrt {x^{4}+1}-8 x^{6} \left (x^{4}+1\right )^{\frac {1}{4}}-4 x^{4} \left (x^{4}+1\right )^{\frac {1}{4}}+3 \left (x^{4}+1\right )^{\frac {3}{4}} x +3 x \left (x^{4}+1\right )^{\frac {1}{4}}+8 \left (x^{4}+1\right )^{\frac {3}{4}} x^{5}-8 x^{4} \left (x^{4}+1\right )^{\frac {3}{4}}+4 x^{3} \left (x^{4}+1\right )^{\frac {3}{4}}+4 \left (x^{4}+1\right )^{\frac {1}{4}} x^{5}-4 \left (x^{4}+1\right )^{\frac {3}{4}} x^{2}+8 \sqrt {x^{4}+1}\, x^{6}-8 \sqrt {x^{4}+1}\, x^{5}-4 \sqrt {x^{4}+1}\, x^{3}+7 x^{3} \left (x^{4}+1\right )^{\frac {1}{4}}}{x^{2}}\right )}{2}+\frac {\operatorname {RootOf}\left (\textit {\_Z}^{2}+1\right ) \ln \left (\frac {-5 x^{2} \left (x^{4}+1\right )^{\frac {1}{4}}-8 \operatorname {RootOf}\left (\textit {\_Z}^{2}+1\right ) x^{8}-4 \operatorname {RootOf}\left (\textit {\_Z}^{2}+1\right ) x^{2}+3 \operatorname {RootOf}\left (\textit {\_Z}^{2}+1\right ) x +7 \operatorname {RootOf}\left (\textit {\_Z}^{2}+1\right ) x^{3}+\left (x^{4}+1\right )^{\frac {3}{4}}-\left (x^{4}+1\right )^{\frac {1}{4}}-9 \operatorname {RootOf}\left (\textit {\_Z}^{2}+1\right ) x^{4}+4 \operatorname {RootOf}\left (\textit {\_Z}^{2}+1\right ) x^{5}-\operatorname {RootOf}\left (\textit {\_Z}^{2}+1\right )+8 \operatorname {RootOf}\left (\textit {\_Z}^{2}+1\right ) x^{7}-4 \operatorname {RootOf}\left (\textit {\_Z}^{2}+1\right ) x^{6}+8 x^{7} \left (x^{4}+1\right )^{\frac {1}{4}}-8 x^{6} \left (x^{4}+1\right )^{\frac {1}{4}}-4 x^{4} \left (x^{4}+1\right )^{\frac {1}{4}}-3 \left (x^{4}+1\right )^{\frac {3}{4}} x +5 \operatorname {RootOf}\left (\textit {\_Z}^{2}+1\right ) \sqrt {x^{4}+1}\, x^{2}+8 \operatorname {RootOf}\left (\textit {\_Z}^{2}+1\right ) \sqrt {x^{4}+1}\, x^{6}-8 \operatorname {RootOf}\left (\textit {\_Z}^{2}+1\right ) \sqrt {x^{4}+1}\, x^{5}+4 \operatorname {RootOf}\left (\textit {\_Z}^{2}+1\right ) \sqrt {x^{4}+1}\, x^{4}-4 \operatorname {RootOf}\left (\textit {\_Z}^{2}+1\right ) \sqrt {x^{4}+1}\, x^{3}-3 \operatorname {RootOf}\left (\textit {\_Z}^{2}+1\right ) \sqrt {x^{4}+1}\, x +3 x \left (x^{4}+1\right )^{\frac {1}{4}}-8 \left (x^{4}+1\right )^{\frac {3}{4}} x^{5}+8 x^{4} \left (x^{4}+1\right )^{\frac {3}{4}}-4 x^{3} \left (x^{4}+1\right )^{\frac {3}{4}}+4 \left (x^{4}+1\right )^{\frac {1}{4}} x^{5}+4 \left (x^{4}+1\right )^{\frac {3}{4}} x^{2}+\operatorname {RootOf}\left (\textit {\_Z}^{2}+1\right ) \sqrt {x^{4}+1}+7 x^{3} \left (x^{4}+1\right )^{\frac {1}{4}}}{x^{2}}\right )}{2}\) \(676\)

[In]

int((3*x^4+3*x+1)/x/(x^4+1)^(1/4),x,method=_RETURNVERBOSE)

[Out]

1/8/Pi*2^(1/2)*GAMMA(3/4)*(-1/4*Pi*2^(1/2)/GAMMA(3/4)*x^4*hypergeom([1,1,5/4],[2,2],-x^4)+(-3*ln(2)-1/2*Pi+4*l
n(x))*Pi*2^(1/2)/GAMMA(3/4))+3/4*x^4*hypergeom([1/4,1],[2],-x^4)+3*x*hypergeom([1/4,1/4],[5/4],-x^4)

Fricas [B] (verification not implemented)

Leaf count of result is larger than twice the leaf count of optimal. 141 vs. \(2 (52) = 104\).

Time = 6.69 (sec) , antiderivative size = 141, normalized size of antiderivative = 2.01 \[ \int \frac {1+3 x+3 x^4}{x \sqrt [4]{1+x^4}} \, dx={\left (x^{4} + 1\right )}^{\frac {3}{4}} + \frac {3}{4} \, \arctan \left (2 \, {\left (x^{4} + 1\right )}^{\frac {1}{4}} x^{3} + 2 \, {\left (x^{4} + 1\right )}^{\frac {3}{4}} x\right ) - \frac {1}{4} \, \arctan \left (\frac {2 \, {\left ({\left (x^{4} + 1\right )}^{\frac {3}{4}} + {\left (x^{4} + 1\right )}^{\frac {1}{4}}\right )}}{x^{4}}\right ) + \frac {3}{4} \, \log \left (2 \, x^{4} + 2 \, {\left (x^{4} + 1\right )}^{\frac {1}{4}} x^{3} + 2 \, \sqrt {x^{4} + 1} x^{2} + 2 \, {\left (x^{4} + 1\right )}^{\frac {3}{4}} x + 1\right ) + \frac {1}{4} \, \log \left (-\frac {x^{4} - 2 \, {\left (x^{4} + 1\right )}^{\frac {3}{4}} + 2 \, \sqrt {x^{4} + 1} - 2 \, {\left (x^{4} + 1\right )}^{\frac {1}{4}} + 2}{x^{4}}\right ) \]

[In]

integrate((3*x^4+3*x+1)/x/(x^4+1)^(1/4),x, algorithm="fricas")

[Out]

(x^4 + 1)^(3/4) + 3/4*arctan(2*(x^4 + 1)^(1/4)*x^3 + 2*(x^4 + 1)^(3/4)*x) - 1/4*arctan(2*((x^4 + 1)^(3/4) + (x
^4 + 1)^(1/4))/x^4) + 3/4*log(2*x^4 + 2*(x^4 + 1)^(1/4)*x^3 + 2*sqrt(x^4 + 1)*x^2 + 2*(x^4 + 1)^(3/4)*x + 1) +
 1/4*log(-(x^4 - 2*(x^4 + 1)^(3/4) + 2*sqrt(x^4 + 1) - 2*(x^4 + 1)^(1/4) + 2)/x^4)

Sympy [C] (verification not implemented)

Result contains complex when optimal does not.

Time = 1.64 (sec) , antiderivative size = 66, normalized size of antiderivative = 0.94 \[ \int \frac {1+3 x+3 x^4}{x \sqrt [4]{1+x^4}} \, dx=\frac {3 x \Gamma \left (\frac {1}{4}\right ) {{}_{2}F_{1}\left (\begin {matrix} \frac {1}{4}, \frac {1}{4} \\ \frac {5}{4} \end {matrix}\middle | {x^{4} e^{i \pi }} \right )}}{4 \Gamma \left (\frac {5}{4}\right )} + \left (x^{4} + 1\right )^{\frac {3}{4}} - \frac {\Gamma \left (\frac {1}{4}\right ) {{}_{2}F_{1}\left (\begin {matrix} \frac {1}{4}, \frac {1}{4} \\ \frac {5}{4} \end {matrix}\middle | {\frac {e^{i \pi }}{x^{4}}} \right )}}{4 x \Gamma \left (\frac {5}{4}\right )} \]

[In]

integrate((3*x**4+3*x+1)/x/(x**4+1)**(1/4),x)

[Out]

3*x*gamma(1/4)*hyper((1/4, 1/4), (5/4,), x**4*exp_polar(I*pi))/(4*gamma(5/4)) + (x**4 + 1)**(3/4) - gamma(1/4)
*hyper((1/4, 1/4), (5/4,), exp_polar(I*pi)/x**4)/(4*x*gamma(5/4))

Maxima [A] (verification not implemented)

none

Time = 0.26 (sec) , antiderivative size = 88, normalized size of antiderivative = 1.26 \[ \int \frac {1+3 x+3 x^4}{x \sqrt [4]{1+x^4}} \, dx={\left (x^{4} + 1\right )}^{\frac {3}{4}} + \frac {1}{2} \, \arctan \left ({\left (x^{4} + 1\right )}^{\frac {1}{4}}\right ) - \frac {3}{2} \, \arctan \left (\frac {{\left (x^{4} + 1\right )}^{\frac {1}{4}}}{x}\right ) - \frac {1}{4} \, \log \left ({\left (x^{4} + 1\right )}^{\frac {1}{4}} + 1\right ) + \frac {1}{4} \, \log \left ({\left (x^{4} + 1\right )}^{\frac {1}{4}} - 1\right ) + \frac {3}{4} \, \log \left (\frac {{\left (x^{4} + 1\right )}^{\frac {1}{4}}}{x} + 1\right ) - \frac {3}{4} \, \log \left (\frac {{\left (x^{4} + 1\right )}^{\frac {1}{4}}}{x} - 1\right ) \]

[In]

integrate((3*x^4+3*x+1)/x/(x^4+1)^(1/4),x, algorithm="maxima")

[Out]

(x^4 + 1)^(3/4) + 1/2*arctan((x^4 + 1)^(1/4)) - 3/2*arctan((x^4 + 1)^(1/4)/x) - 1/4*log((x^4 + 1)^(1/4) + 1) +
 1/4*log((x^4 + 1)^(1/4) - 1) + 3/4*log((x^4 + 1)^(1/4)/x + 1) - 3/4*log((x^4 + 1)^(1/4)/x - 1)

Giac [F]

\[ \int \frac {1+3 x+3 x^4}{x \sqrt [4]{1+x^4}} \, dx=\int { \frac {3 \, x^{4} + 3 \, x + 1}{{\left (x^{4} + 1\right )}^{\frac {1}{4}} x} \,d x } \]

[In]

integrate((3*x^4+3*x+1)/x/(x^4+1)^(1/4),x, algorithm="giac")

[Out]

integrate((3*x^4 + 3*x + 1)/((x^4 + 1)^(1/4)*x), x)

Mupad [B] (verification not implemented)

Time = 5.59 (sec) , antiderivative size = 41, normalized size of antiderivative = 0.59 \[ \int \frac {1+3 x+3 x^4}{x \sqrt [4]{1+x^4}} \, dx=\frac {\mathrm {atan}\left ({\left (x^4+1\right )}^{1/4}\right )}{2}-\frac {\mathrm {atanh}\left ({\left (x^4+1\right )}^{1/4}\right )}{2}+3\,x\,{{}}_2{\mathrm {F}}_1\left (\frac {1}{4},\frac {1}{4};\ \frac {5}{4};\ -x^4\right )+{\left (x^4+1\right )}^{3/4} \]

[In]

int((3*x + 3*x^4 + 1)/(x*(x^4 + 1)^(1/4)),x)

[Out]

atan((x^4 + 1)^(1/4))/2 - atanh((x^4 + 1)^(1/4))/2 + 3*x*hypergeom([1/4, 1/4], 5/4, -x^4) + (x^4 + 1)^(3/4)