\(\int \frac {-4 x^2+4900 x^5-125 x^6+(196-8 x+6125 x^4-150 x^5) \log (5)}{x^2+2 x \log (5)+\log ^2(5)} \, dx\) [9970]

   Optimal result
   Rubi [B] (verified)
   Mathematica [B] (verified)
   Maple [A] (verified)
   Fricas [B] (verification not implemented)
   Sympy [B] (verification not implemented)
   Maxima [B] (verification not implemented)
   Giac [B] (verification not implemented)
   Mupad [B] (verification not implemented)

Optimal result

Integrand size = 50, antiderivative size = 22 \[ \int \frac {-4 x^2+4900 x^5-125 x^6+\left (196-8 x+6125 x^4-150 x^5\right ) \log (5)}{x^2+2 x \log (5)+\log ^2(5)} \, dx=2+\frac {(49-x) x \left (4+25 x^4\right )}{x+\log (5)} \]

[Out]

2+(49-x)/(ln(5)+x)*(25*x^4+4)*x

Rubi [B] (verified)

Leaf count is larger than twice the leaf count of optimal. \(80\) vs. \(2(22)=44\).

Time = 0.07 (sec) , antiderivative size = 80, normalized size of antiderivative = 3.64, number of steps used = 3, number of rules used = 2, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.040, Rules used = {27, 1864} \[ \int \frac {-4 x^2+4900 x^5-125 x^6+\left (196-8 x+6125 x^4-150 x^5\right ) \log (5)}{x^2+2 x \log (5)+\log ^2(5)} \, dx=-25 x^5+25 x^4 (49+\log (5))-25 x^3 \log (5) (49+\log (5))+25 x^2 \log ^2(5) (49+\log (5))-x \left (4+25 \log ^3(5) (49+\log (5))\right )-\frac {\log (5) \left (196+25 \log ^5(5)+1225 \log ^4(5)+\log (625)\right )}{x+\log (5)} \]

[In]

Int[(-4*x^2 + 4900*x^5 - 125*x^6 + (196 - 8*x + 6125*x^4 - 150*x^5)*Log[5])/(x^2 + 2*x*Log[5] + Log[5]^2),x]

[Out]

-25*x^5 + 25*x^4*(49 + Log[5]) - 25*x^3*Log[5]*(49 + Log[5]) + 25*x^2*Log[5]^2*(49 + Log[5]) - x*(4 + 25*Log[5
]^3*(49 + Log[5])) - (Log[5]*(196 + 1225*Log[5]^4 + 25*Log[5]^5 + Log[625]))/(x + Log[5])

Rule 27

Int[(u_.)*((a_) + (b_.)*(x_) + (c_.)*(x_)^2)^(p_.), x_Symbol] :> Int[u*Cancel[(b/2 + c*x)^(2*p)/c^p], x] /; Fr
eeQ[{a, b, c}, x] && EqQ[b^2 - 4*a*c, 0] && IntegerQ[p]

Rule 1864

Int[(Pq_)*((a_) + (b_.)*(x_)^(n_.))^(p_.), x_Symbol] :> Int[ExpandIntegrand[Pq*(a + b*x^n)^p, x], x] /; FreeQ[
{a, b, n}, x] && PolyQ[Pq, x] && (IGtQ[p, 0] || EqQ[n, 1])

Rubi steps \begin{align*} \text {integral}& = \int \frac {-4 x^2+4900 x^5-125 x^6+\left (196-8 x+6125 x^4-150 x^5\right ) \log (5)}{(x+\log (5))^2} \, dx \\ & = \int \left (-125 x^4+100 x^3 (49+\log (5))-75 x^2 \log (5) (49+\log (5))+50 x \log ^2(5) (49+\log (5))-4 \left (1+\frac {25}{4} \log ^3(5) (49+\log (5))\right )+\frac {\log (5) \left (196+1225 \log ^4(5)+25 \log ^5(5)+\log (625)\right )}{(x+\log (5))^2}\right ) \, dx \\ & = -25 x^5+25 x^4 (49+\log (5))-25 x^3 \log (5) (49+\log (5))+25 x^2 \log ^2(5) (49+\log (5))-x \left (4+25 \log ^3(5) (49+\log (5))\right )-\frac {\log (5) \left (196+1225 \log ^4(5)+25 \log ^5(5)+\log (625)\right )}{x+\log (5)} \\ \end{align*}

Mathematica [B] (verified)

Leaf count is larger than twice the leaf count of optimal. \(89\) vs. \(2(22)=44\).

Time = 0.05 (sec) , antiderivative size = 89, normalized size of antiderivative = 4.05 \[ \int \frac {-4 x^2+4900 x^5-125 x^6+\left (196-8 x+6125 x^4-150 x^5\right ) \log (5)}{x^2+2 x \log (5)+\log ^2(5)} \, dx=\frac {1225 x^5-25 x^6+x^2 \left (-4-375 \log ^4(5)+125 \log ^3(5) \log (125)\right )-x \log (5) \left (4+625 \log ^4(5)-25 \log ^3(5) (-49+8 \log (125))\right )-\log (5) \left (196+625 \log ^5(5)-25 \log ^4(5) (-49+8 \log (125))+\log (625)\right )}{x+\log (5)} \]

[In]

Integrate[(-4*x^2 + 4900*x^5 - 125*x^6 + (196 - 8*x + 6125*x^4 - 150*x^5)*Log[5])/(x^2 + 2*x*Log[5] + Log[5]^2
),x]

[Out]

(1225*x^5 - 25*x^6 + x^2*(-4 - 375*Log[5]^4 + 125*Log[5]^3*Log[125]) - x*Log[5]*(4 + 625*Log[5]^4 - 25*Log[5]^
3*(-49 + 8*Log[125])) - Log[5]*(196 + 625*Log[5]^5 - 25*Log[5]^4*(-49 + 8*Log[125]) + Log[625]))/(x + Log[5])

Maple [A] (verified)

Time = 1.69 (sec) , antiderivative size = 28, normalized size of antiderivative = 1.27

method result size
norman \(\frac {-4 x^{2}+1225 x^{5}-25 x^{6}-196 \ln \left (5\right )}{\ln \left (5\right )+x}\) \(28\)
parallelrisch \(\frac {-4 x^{2}+1225 x^{5}-25 x^{6}-196 \ln \left (5\right )}{\ln \left (5\right )+x}\) \(28\)
gosper \(-\frac {25 x^{6}-1225 x^{5}+4 x^{2}+196 \ln \left (5\right )}{\ln \left (5\right )+x}\) \(29\)
default \(-25 x \ln \left (5\right )^{4}+25 x^{2} \ln \left (5\right )^{3}-25 x^{3} \ln \left (5\right )^{2}+25 x^{4} \ln \left (5\right )-25 x^{5}-1225 x \ln \left (5\right )^{3}+1225 x^{2} \ln \left (5\right )^{2}-1225 x^{3} \ln \left (5\right )+1225 x^{4}-4 x -\frac {\ln \left (5\right ) \left (25 \ln \left (5\right )^{5}+1225 \ln \left (5\right )^{4}+4 \ln \left (5\right )+196\right )}{\ln \left (5\right )+x}\) \(98\)
risch \(-25 x \ln \left (5\right )^{4}+25 x^{2} \ln \left (5\right )^{3}-25 x^{3} \ln \left (5\right )^{2}+25 x^{4} \ln \left (5\right )-25 x^{5}-1225 x \ln \left (5\right )^{3}+1225 x^{2} \ln \left (5\right )^{2}-1225 x^{3} \ln \left (5\right )+1225 x^{4}-4 x -\frac {25 \ln \left (5\right )^{6}}{\ln \left (5\right )+x}-\frac {1225 \ln \left (5\right )^{5}}{\ln \left (5\right )+x}-\frac {4 \ln \left (5\right )^{2}}{\ln \left (5\right )+x}-\frac {196 \ln \left (5\right )}{\ln \left (5\right )+x}\) \(116\)
meijerg \(\ln \left (5\right )^{4} \left (-150 \ln \left (5\right )+4900\right ) \left (-\frac {x \left (-\frac {3 x^{4}}{\ln \left (5\right )^{4}}+\frac {5 x^{3}}{\ln \left (5\right )^{3}}-\frac {10 x^{2}}{\ln \left (5\right )^{2}}+\frac {30 x}{\ln \left (5\right )}+60\right )}{12 \ln \left (5\right ) \left (1+\frac {x}{\ln \left (5\right )}\right )}+5 \ln \left (1+\frac {x}{\ln \left (5\right )}\right )\right )+6125 \ln \left (5\right )^{4} \left (\frac {x \left (\frac {5 x^{3}}{\ln \left (5\right )^{3}}-\frac {10 x^{2}}{\ln \left (5\right )^{2}}+\frac {30 x}{\ln \left (5\right )}+60\right )}{15 \ln \left (5\right ) \left (1+\frac {x}{\ln \left (5\right )}\right )}-4 \ln \left (1+\frac {x}{\ln \left (5\right )}\right )\right )-8 \ln \left (5\right ) \left (-\frac {x}{\ln \left (5\right ) \left (1+\frac {x}{\ln \left (5\right )}\right )}+\ln \left (1+\frac {x}{\ln \left (5\right )}\right )\right )-125 \ln \left (5\right )^{5} \left (\frac {x \left (\frac {14 x^{5}}{\ln \left (5\right )^{5}}-\frac {21 x^{4}}{\ln \left (5\right )^{4}}+\frac {35 x^{3}}{\ln \left (5\right )^{3}}-\frac {70 x^{2}}{\ln \left (5\right )^{2}}+\frac {210 x}{\ln \left (5\right )}+420\right )}{70 \ln \left (5\right ) \left (1+\frac {x}{\ln \left (5\right )}\right )}-6 \ln \left (1+\frac {x}{\ln \left (5\right )}\right )\right )-4 \ln \left (5\right ) \left (\frac {x \left (6+\frac {3 x}{\ln \left (5\right )}\right )}{3 \ln \left (5\right ) \left (1+\frac {x}{\ln \left (5\right )}\right )}-2 \ln \left (1+\frac {x}{\ln \left (5\right )}\right )\right )+\frac {196 x}{\ln \left (5\right ) \left (1+\frac {x}{\ln \left (5\right )}\right )}\) \(310\)

[In]

int(((-150*x^5+6125*x^4-8*x+196)*ln(5)-125*x^6+4900*x^5-4*x^2)/(ln(5)^2+2*x*ln(5)+x^2),x,method=_RETURNVERBOSE
)

[Out]

(-4*x^2+1225*x^5-25*x^6-196*ln(5))/(ln(5)+x)

Fricas [B] (verification not implemented)

Leaf count of result is larger than twice the leaf count of optimal. 59 vs. \(2 (21) = 42\).

Time = 0.28 (sec) , antiderivative size = 59, normalized size of antiderivative = 2.68 \[ \int \frac {-4 x^2+4900 x^5-125 x^6+\left (196-8 x+6125 x^4-150 x^5\right ) \log (5)}{x^2+2 x \log (5)+\log ^2(5)} \, dx=-\frac {25 \, x^{6} + 25 \, {\left (x + 49\right )} \log \left (5\right )^{5} + 25 \, \log \left (5\right )^{6} - 1225 \, x^{5} + 1225 \, x \log \left (5\right )^{4} + 4 \, x^{2} + 4 \, {\left (x + 49\right )} \log \left (5\right ) + 4 \, \log \left (5\right )^{2}}{x + \log \left (5\right )} \]

[In]

integrate(((-150*x^5+6125*x^4-8*x+196)*log(5)-125*x^6+4900*x^5-4*x^2)/(log(5)^2+2*x*log(5)+x^2),x, algorithm="
fricas")

[Out]

-(25*x^6 + 25*(x + 49)*log(5)^5 + 25*log(5)^6 - 1225*x^5 + 1225*x*log(5)^4 + 4*x^2 + 4*(x + 49)*log(5) + 4*log
(5)^2)/(x + log(5))

Sympy [B] (verification not implemented)

Leaf count of result is larger than twice the leaf count of optimal. 99 vs. \(2 (17) = 34\).

Time = 0.18 (sec) , antiderivative size = 99, normalized size of antiderivative = 4.50 \[ \int \frac {-4 x^2+4900 x^5-125 x^6+\left (196-8 x+6125 x^4-150 x^5\right ) \log (5)}{x^2+2 x \log (5)+\log ^2(5)} \, dx=- 25 x^{5} - x^{4} \left (-1225 - 25 \log {\left (5 \right )}\right ) - x^{3} \cdot \left (25 \log {\left (5 \right )}^{2} + 1225 \log {\left (5 \right )}\right ) - x^{2} \left (- 1225 \log {\left (5 \right )}^{2} - 25 \log {\left (5 \right )}^{3}\right ) - x \left (4 + 25 \log {\left (5 \right )}^{4} + 1225 \log {\left (5 \right )}^{3}\right ) - \frac {4 \log {\left (5 \right )}^{2} + 196 \log {\left (5 \right )} + 25 \log {\left (5 \right )}^{6} + 1225 \log {\left (5 \right )}^{5}}{x + \log {\left (5 \right )}} \]

[In]

integrate(((-150*x**5+6125*x**4-8*x+196)*ln(5)-125*x**6+4900*x**5-4*x**2)/(ln(5)**2+2*x*ln(5)+x**2),x)

[Out]

-25*x**5 - x**4*(-1225 - 25*log(5)) - x**3*(25*log(5)**2 + 1225*log(5)) - x**2*(-1225*log(5)**2 - 25*log(5)**3
) - x*(4 + 25*log(5)**4 + 1225*log(5)**3) - (4*log(5)**2 + 196*log(5) + 25*log(5)**6 + 1225*log(5)**5)/(x + lo
g(5))

Maxima [B] (verification not implemented)

Leaf count of result is larger than twice the leaf count of optimal. 93 vs. \(2 (21) = 42\).

Time = 0.18 (sec) , antiderivative size = 93, normalized size of antiderivative = 4.23 \[ \int \frac {-4 x^2+4900 x^5-125 x^6+\left (196-8 x+6125 x^4-150 x^5\right ) \log (5)}{x^2+2 x \log (5)+\log ^2(5)} \, dx=-25 \, x^{5} + 25 \, x^{4} {\left (\log \left (5\right ) + 49\right )} - 25 \, {\left (\log \left (5\right )^{2} + 49 \, \log \left (5\right )\right )} x^{3} + 25 \, {\left (\log \left (5\right )^{3} + 49 \, \log \left (5\right )^{2}\right )} x^{2} - {\left (25 \, \log \left (5\right )^{4} + 1225 \, \log \left (5\right )^{3} + 4\right )} x - \frac {25 \, \log \left (5\right )^{6} + 1225 \, \log \left (5\right )^{5} + 4 \, \log \left (5\right )^{2} + 196 \, \log \left (5\right )}{x + \log \left (5\right )} \]

[In]

integrate(((-150*x^5+6125*x^4-8*x+196)*log(5)-125*x^6+4900*x^5-4*x^2)/(log(5)^2+2*x*log(5)+x^2),x, algorithm="
maxima")

[Out]

-25*x^5 + 25*x^4*(log(5) + 49) - 25*(log(5)^2 + 49*log(5))*x^3 + 25*(log(5)^3 + 49*log(5)^2)*x^2 - (25*log(5)^
4 + 1225*log(5)^3 + 4)*x - (25*log(5)^6 + 1225*log(5)^5 + 4*log(5)^2 + 196*log(5))/(x + log(5))

Giac [B] (verification not implemented)

Leaf count of result is larger than twice the leaf count of optimal. 100 vs. \(2 (21) = 42\).

Time = 0.26 (sec) , antiderivative size = 100, normalized size of antiderivative = 4.55 \[ \int \frac {-4 x^2+4900 x^5-125 x^6+\left (196-8 x+6125 x^4-150 x^5\right ) \log (5)}{x^2+2 x \log (5)+\log ^2(5)} \, dx=-25 \, x^{5} + 25 \, x^{4} \log \left (5\right ) - 25 \, x^{3} \log \left (5\right )^{2} + 25 \, x^{2} \log \left (5\right )^{3} - 25 \, x \log \left (5\right )^{4} + 1225 \, x^{4} - 1225 \, x^{3} \log \left (5\right ) + 1225 \, x^{2} \log \left (5\right )^{2} - 1225 \, x \log \left (5\right )^{3} - 4 \, x - \frac {25 \, \log \left (5\right )^{6} + 1225 \, \log \left (5\right )^{5} + 4 \, \log \left (5\right )^{2} + 196 \, \log \left (5\right )}{x + \log \left (5\right )} \]

[In]

integrate(((-150*x^5+6125*x^4-8*x+196)*log(5)-125*x^6+4900*x^5-4*x^2)/(log(5)^2+2*x*log(5)+x^2),x, algorithm="
giac")

[Out]

-25*x^5 + 25*x^4*log(5) - 25*x^3*log(5)^2 + 25*x^2*log(5)^3 - 25*x*log(5)^4 + 1225*x^4 - 1225*x^3*log(5) + 122
5*x^2*log(5)^2 - 1225*x*log(5)^3 - 4*x - (25*log(5)^6 + 1225*log(5)^5 + 4*log(5)^2 + 196*log(5))/(x + log(5))

Mupad [B] (verification not implemented)

Time = 14.44 (sec) , antiderivative size = 185, normalized size of antiderivative = 8.41 \[ \int \frac {-4 x^2+4900 x^5-125 x^6+\left (196-8 x+6125 x^4-150 x^5\right ) \log (5)}{x^2+2 x \log (5)+\log ^2(5)} \, dx=x^4\,\left (25\,\ln \left (5\right )+1225\right )-x\,\left ({\ln \left (5\right )}^2\,\left (6125\,\ln \left (5\right )+125\,{\ln \left (5\right )}^2-2\,\ln \left (5\right )\,\left (100\,\ln \left (5\right )+4900\right )\right )-2\,\ln \left (5\right )\,\left (2\,\ln \left (5\right )\,\left (6125\,\ln \left (5\right )+125\,{\ln \left (5\right )}^2-2\,\ln \left (5\right )\,\left (100\,\ln \left (5\right )+4900\right )\right )+{\ln \left (5\right )}^2\,\left (100\,\ln \left (5\right )+4900\right )\right )+4\right )-x^2\,\left (\ln \left (5\right )\,\left (6125\,\ln \left (5\right )+125\,{\ln \left (5\right )}^2-2\,\ln \left (5\right )\,\left (100\,\ln \left (5\right )+4900\right )\right )+\frac {{\ln \left (5\right )}^2\,\left (100\,\ln \left (5\right )+4900\right )}{2}\right )+x^3\,\left (\frac {6125\,\ln \left (5\right )}{3}+\frac {125\,{\ln \left (5\right )}^2}{3}-\frac {2\,\ln \left (5\right )\,\left (100\,\ln \left (5\right )+4900\right )}{3}\right )-\frac {196\,\ln \left (5\right )+\ln \left (5\right )\,\ln \left (625\right )+1225\,{\ln \left (5\right )}^5+25\,{\ln \left (5\right )}^6}{x+\ln \left (5\right )}-25\,x^5 \]

[In]

int(-(log(5)*(8*x - 6125*x^4 + 150*x^5 - 196) + 4*x^2 - 4900*x^5 + 125*x^6)/(2*x*log(5) + log(5)^2 + x^2),x)

[Out]

x^4*(25*log(5) + 1225) - x*(log(5)^2*(6125*log(5) + 125*log(5)^2 - 2*log(5)*(100*log(5) + 4900)) - 2*log(5)*(2
*log(5)*(6125*log(5) + 125*log(5)^2 - 2*log(5)*(100*log(5) + 4900)) + log(5)^2*(100*log(5) + 4900)) + 4) - x^2
*(log(5)*(6125*log(5) + 125*log(5)^2 - 2*log(5)*(100*log(5) + 4900)) + (log(5)^2*(100*log(5) + 4900))/2) + x^3
*((6125*log(5))/3 + (125*log(5)^2)/3 - (2*log(5)*(100*log(5) + 4900))/3) - (196*log(5) + log(5)*log(625) + 122
5*log(5)^5 + 25*log(5)^6)/(x + log(5)) - 25*x^5