\(\int \frac {e^x (1-2 x-4 x^2)+e^x (-4-5 x) \log (x)+(e^x (x^2+x^3)+e^x (x+x^2) \log (x)) \log (\frac {10 x^4+10 x^5}{x+\log (x)})}{(x^2+x^3+(x+x^2) \log (x)) \log ^2(\frac {10 x^4+10 x^5}{x+\log (x)})} \, dx\) [10081]

   Optimal result
   Rubi [F]
   Mathematica [A] (verified)
   Maple [C] (warning: unable to verify)
   Fricas [A] (verification not implemented)
   Sympy [A] (verification not implemented)
   Maxima [A] (verification not implemented)
   Giac [A] (verification not implemented)
   Mupad [B] (verification not implemented)

Optimal result

Integrand size = 108, antiderivative size = 23 \[ \int \frac {e^x \left (1-2 x-4 x^2\right )+e^x (-4-5 x) \log (x)+\left (e^x \left (x^2+x^3\right )+e^x \left (x+x^2\right ) \log (x)\right ) \log \left (\frac {10 x^4+10 x^5}{x+\log (x)}\right )}{\left (x^2+x^3+\left (x+x^2\right ) \log (x)\right ) \log ^2\left (\frac {10 x^4+10 x^5}{x+\log (x)}\right )} \, dx=\frac {e^x}{\log \left (\frac {10 x^3 \left (x+x^2\right )}{x+\log (x)}\right )} \]

[Out]

exp(x)/ln(10*x^3*(x^2+x)/(x+ln(x)))

Rubi [F]

\[ \int \frac {e^x \left (1-2 x-4 x^2\right )+e^x (-4-5 x) \log (x)+\left (e^x \left (x^2+x^3\right )+e^x \left (x+x^2\right ) \log (x)\right ) \log \left (\frac {10 x^4+10 x^5}{x+\log (x)}\right )}{\left (x^2+x^3+\left (x+x^2\right ) \log (x)\right ) \log ^2\left (\frac {10 x^4+10 x^5}{x+\log (x)}\right )} \, dx=\int \frac {e^x \left (1-2 x-4 x^2\right )+e^x (-4-5 x) \log (x)+\left (e^x \left (x^2+x^3\right )+e^x \left (x+x^2\right ) \log (x)\right ) \log \left (\frac {10 x^4+10 x^5}{x+\log (x)}\right )}{\left (x^2+x^3+\left (x+x^2\right ) \log (x)\right ) \log ^2\left (\frac {10 x^4+10 x^5}{x+\log (x)}\right )} \, dx \]

[In]

Int[(E^x*(1 - 2*x - 4*x^2) + E^x*(-4 - 5*x)*Log[x] + (E^x*(x^2 + x^3) + E^x*(x + x^2)*Log[x])*Log[(10*x^4 + 10
*x^5)/(x + Log[x])])/((x^2 + x^3 + (x + x^2)*Log[x])*Log[(10*x^4 + 10*x^5)/(x + Log[x])]^2),x]

[Out]

-4*Defer[Int][E^x/((x + Log[x])*Log[(10*x^4*(1 + x))/(x + Log[x])]^2), x] + Defer[Int][E^x/(x*(x + Log[x])*Log
[(10*x^4*(1 + x))/(x + Log[x])]^2), x] + Defer[Int][E^x/((1 + x)*(x + Log[x])*Log[(10*x^4*(1 + x))/(x + Log[x]
)]^2), x] - 4*Defer[Int][(E^x*Log[x])/(x*(x + Log[x])*Log[(10*x^4*(1 + x))/(x + Log[x])]^2), x] - Defer[Int][(
E^x*Log[x])/((1 + x)*(x + Log[x])*Log[(10*x^4*(1 + x))/(x + Log[x])]^2), x] + Defer[Int][E^x/Log[(10*x^4*(1 +
x))/(x + Log[x])], x]

Rubi steps \begin{align*} \text {integral}& = \int \frac {e^x \left (1-2 x-4 x^2\right )+e^x (-4-5 x) \log (x)+\left (e^x \left (x^2+x^3\right )+e^x \left (x+x^2\right ) \log (x)\right ) \log \left (\frac {10 x^4+10 x^5}{x+\log (x)}\right )}{x (1+x) (x+\log (x)) \log ^2\left (\frac {10 x^4 (1+x)}{x+\log (x)}\right )} \, dx \\ & = \int \left (\frac {e^x \left (1-2 x-4 x^2-4 \log (x)-5 x \log (x)+x^2 \log \left (\frac {10 x^4 (1+x)}{x+\log (x)}\right )+x^3 \log \left (\frac {10 x^4 (1+x)}{x+\log (x)}\right )+x \log (x) \log \left (\frac {10 x^4 (1+x)}{x+\log (x)}\right )+x^2 \log (x) \log \left (\frac {10 x^4 (1+x)}{x+\log (x)}\right )\right )}{x (x+\log (x)) \log ^2\left (\frac {10 x^4 (1+x)}{x+\log (x)}\right )}-\frac {e^x \left (1-2 x-4 x^2-4 \log (x)-5 x \log (x)+x^2 \log \left (\frac {10 x^4 (1+x)}{x+\log (x)}\right )+x^3 \log \left (\frac {10 x^4 (1+x)}{x+\log (x)}\right )+x \log (x) \log \left (\frac {10 x^4 (1+x)}{x+\log (x)}\right )+x^2 \log (x) \log \left (\frac {10 x^4 (1+x)}{x+\log (x)}\right )\right )}{(1+x) (x+\log (x)) \log ^2\left (\frac {10 x^4 (1+x)}{x+\log (x)}\right )}\right ) \, dx \\ & = \int \frac {e^x \left (1-2 x-4 x^2-4 \log (x)-5 x \log (x)+x^2 \log \left (\frac {10 x^4 (1+x)}{x+\log (x)}\right )+x^3 \log \left (\frac {10 x^4 (1+x)}{x+\log (x)}\right )+x \log (x) \log \left (\frac {10 x^4 (1+x)}{x+\log (x)}\right )+x^2 \log (x) \log \left (\frac {10 x^4 (1+x)}{x+\log (x)}\right )\right )}{x (x+\log (x)) \log ^2\left (\frac {10 x^4 (1+x)}{x+\log (x)}\right )} \, dx-\int \frac {e^x \left (1-2 x-4 x^2-4 \log (x)-5 x \log (x)+x^2 \log \left (\frac {10 x^4 (1+x)}{x+\log (x)}\right )+x^3 \log \left (\frac {10 x^4 (1+x)}{x+\log (x)}\right )+x \log (x) \log \left (\frac {10 x^4 (1+x)}{x+\log (x)}\right )+x^2 \log (x) \log \left (\frac {10 x^4 (1+x)}{x+\log (x)}\right )\right )}{(1+x) (x+\log (x)) \log ^2\left (\frac {10 x^4 (1+x)}{x+\log (x)}\right )} \, dx \\ & = \int \frac {e^x \left (1-2 x-4 x^2+x^2 (1+x) \log \left (\frac {10 x^4 (1+x)}{x+\log (x)}\right )+\log (x) \left (-4-5 x+x (1+x) \log \left (\frac {10 x^4 (1+x)}{x+\log (x)}\right )\right )\right )}{x (x+\log (x)) \log ^2\left (\frac {10 x^4 (1+x)}{x+\log (x)}\right )} \, dx-\int \frac {e^x \left (1-2 x-4 x^2+x^2 (1+x) \log \left (\frac {10 x^4 (1+x)}{x+\log (x)}\right )+\log (x) \left (-4-5 x+x (1+x) \log \left (\frac {10 x^4 (1+x)}{x+\log (x)}\right )\right )\right )}{(1+x) (x+\log (x)) \log ^2\left (\frac {10 x^4 (1+x)}{x+\log (x)}\right )} \, dx \\ & = -\int \left (\frac {e^x \left (1-2 x-4 x^2-4 \log (x)-5 x \log (x)\right )}{(1+x) (x+\log (x)) \log ^2\left (\frac {10 x^4 (1+x)}{x+\log (x)}\right )}+\frac {e^x x}{\log \left (\frac {10 x^4 (1+x)}{x+\log (x)}\right )}\right ) \, dx+\int \left (\frac {e^x \left (1-2 x-4 x^2-4 \log (x)-5 x \log (x)\right )}{x (x+\log (x)) \log ^2\left (\frac {10 x^4 (1+x)}{x+\log (x)}\right )}+\frac {e^x (1+x)}{\log \left (\frac {10 x^4 (1+x)}{x+\log (x)}\right )}\right ) \, dx \\ & = \int \frac {e^x \left (1-2 x-4 x^2-4 \log (x)-5 x \log (x)\right )}{x (x+\log (x)) \log ^2\left (\frac {10 x^4 (1+x)}{x+\log (x)}\right )} \, dx-\int \frac {e^x \left (1-2 x-4 x^2-4 \log (x)-5 x \log (x)\right )}{(1+x) (x+\log (x)) \log ^2\left (\frac {10 x^4 (1+x)}{x+\log (x)}\right )} \, dx-\int \frac {e^x x}{\log \left (\frac {10 x^4 (1+x)}{x+\log (x)}\right )} \, dx+\int \frac {e^x (1+x)}{\log \left (\frac {10 x^4 (1+x)}{x+\log (x)}\right )} \, dx \\ & = \int \left (-\frac {2 e^x}{(x+\log (x)) \log ^2\left (\frac {10 x^4 (1+x)}{x+\log (x)}\right )}+\frac {e^x}{x (x+\log (x)) \log ^2\left (\frac {10 x^4 (1+x)}{x+\log (x)}\right )}-\frac {4 e^x x}{(x+\log (x)) \log ^2\left (\frac {10 x^4 (1+x)}{x+\log (x)}\right )}-\frac {5 e^x \log (x)}{(x+\log (x)) \log ^2\left (\frac {10 x^4 (1+x)}{x+\log (x)}\right )}-\frac {4 e^x \log (x)}{x (x+\log (x)) \log ^2\left (\frac {10 x^4 (1+x)}{x+\log (x)}\right )}\right ) \, dx-\int \left (\frac {e^x}{(1+x) (x+\log (x)) \log ^2\left (\frac {10 x^4 (1+x)}{x+\log (x)}\right )}-\frac {2 e^x x}{(1+x) (x+\log (x)) \log ^2\left (\frac {10 x^4 (1+x)}{x+\log (x)}\right )}-\frac {4 e^x x^2}{(1+x) (x+\log (x)) \log ^2\left (\frac {10 x^4 (1+x)}{x+\log (x)}\right )}-\frac {4 e^x \log (x)}{(1+x) (x+\log (x)) \log ^2\left (\frac {10 x^4 (1+x)}{x+\log (x)}\right )}-\frac {5 e^x x \log (x)}{(1+x) (x+\log (x)) \log ^2\left (\frac {10 x^4 (1+x)}{x+\log (x)}\right )}\right ) \, dx+\int \left (\frac {e^x}{\log \left (\frac {10 x^4 (1+x)}{x+\log (x)}\right )}+\frac {e^x x}{\log \left (\frac {10 x^4 (1+x)}{x+\log (x)}\right )}\right ) \, dx-\int \frac {e^x x}{\log \left (\frac {10 x^4 (1+x)}{x+\log (x)}\right )} \, dx \\ & = -\left (2 \int \frac {e^x}{(x+\log (x)) \log ^2\left (\frac {10 x^4 (1+x)}{x+\log (x)}\right )} \, dx\right )+2 \int \frac {e^x x}{(1+x) (x+\log (x)) \log ^2\left (\frac {10 x^4 (1+x)}{x+\log (x)}\right )} \, dx-4 \int \frac {e^x x}{(x+\log (x)) \log ^2\left (\frac {10 x^4 (1+x)}{x+\log (x)}\right )} \, dx+4 \int \frac {e^x x^2}{(1+x) (x+\log (x)) \log ^2\left (\frac {10 x^4 (1+x)}{x+\log (x)}\right )} \, dx-4 \int \frac {e^x \log (x)}{x (x+\log (x)) \log ^2\left (\frac {10 x^4 (1+x)}{x+\log (x)}\right )} \, dx+4 \int \frac {e^x \log (x)}{(1+x) (x+\log (x)) \log ^2\left (\frac {10 x^4 (1+x)}{x+\log (x)}\right )} \, dx-5 \int \frac {e^x \log (x)}{(x+\log (x)) \log ^2\left (\frac {10 x^4 (1+x)}{x+\log (x)}\right )} \, dx+5 \int \frac {e^x x \log (x)}{(1+x) (x+\log (x)) \log ^2\left (\frac {10 x^4 (1+x)}{x+\log (x)}\right )} \, dx+\int \frac {e^x}{x (x+\log (x)) \log ^2\left (\frac {10 x^4 (1+x)}{x+\log (x)}\right )} \, dx-\int \frac {e^x}{(1+x) (x+\log (x)) \log ^2\left (\frac {10 x^4 (1+x)}{x+\log (x)}\right )} \, dx+\int \frac {e^x}{\log \left (\frac {10 x^4 (1+x)}{x+\log (x)}\right )} \, dx \\ & = 2 \int \left (\frac {e^x}{(x+\log (x)) \log ^2\left (\frac {10 x^4 (1+x)}{x+\log (x)}\right )}-\frac {e^x}{(1+x) (x+\log (x)) \log ^2\left (\frac {10 x^4 (1+x)}{x+\log (x)}\right )}\right ) \, dx-2 \int \frac {e^x}{(x+\log (x)) \log ^2\left (\frac {10 x^4 (1+x)}{x+\log (x)}\right )} \, dx+4 \int \left (-\frac {e^x}{(x+\log (x)) \log ^2\left (\frac {10 x^4 (1+x)}{x+\log (x)}\right )}+\frac {e^x x}{(x+\log (x)) \log ^2\left (\frac {10 x^4 (1+x)}{x+\log (x)}\right )}+\frac {e^x}{(1+x) (x+\log (x)) \log ^2\left (\frac {10 x^4 (1+x)}{x+\log (x)}\right )}\right ) \, dx-4 \int \frac {e^x x}{(x+\log (x)) \log ^2\left (\frac {10 x^4 (1+x)}{x+\log (x)}\right )} \, dx-4 \int \frac {e^x \log (x)}{x (x+\log (x)) \log ^2\left (\frac {10 x^4 (1+x)}{x+\log (x)}\right )} \, dx+4 \int \frac {e^x \log (x)}{(1+x) (x+\log (x)) \log ^2\left (\frac {10 x^4 (1+x)}{x+\log (x)}\right )} \, dx+5 \int \left (\frac {e^x \log (x)}{(x+\log (x)) \log ^2\left (\frac {10 x^4 (1+x)}{x+\log (x)}\right )}-\frac {e^x \log (x)}{(1+x) (x+\log (x)) \log ^2\left (\frac {10 x^4 (1+x)}{x+\log (x)}\right )}\right ) \, dx-5 \int \frac {e^x \log (x)}{(x+\log (x)) \log ^2\left (\frac {10 x^4 (1+x)}{x+\log (x)}\right )} \, dx+\int \frac {e^x}{x (x+\log (x)) \log ^2\left (\frac {10 x^4 (1+x)}{x+\log (x)}\right )} \, dx-\int \frac {e^x}{(1+x) (x+\log (x)) \log ^2\left (\frac {10 x^4 (1+x)}{x+\log (x)}\right )} \, dx+\int \frac {e^x}{\log \left (\frac {10 x^4 (1+x)}{x+\log (x)}\right )} \, dx \\ & = -\left (2 \int \frac {e^x}{(1+x) (x+\log (x)) \log ^2\left (\frac {10 x^4 (1+x)}{x+\log (x)}\right )} \, dx\right )-4 \int \frac {e^x}{(x+\log (x)) \log ^2\left (\frac {10 x^4 (1+x)}{x+\log (x)}\right )} \, dx+4 \int \frac {e^x}{(1+x) (x+\log (x)) \log ^2\left (\frac {10 x^4 (1+x)}{x+\log (x)}\right )} \, dx-4 \int \frac {e^x \log (x)}{x (x+\log (x)) \log ^2\left (\frac {10 x^4 (1+x)}{x+\log (x)}\right )} \, dx+4 \int \frac {e^x \log (x)}{(1+x) (x+\log (x)) \log ^2\left (\frac {10 x^4 (1+x)}{x+\log (x)}\right )} \, dx-5 \int \frac {e^x \log (x)}{(1+x) (x+\log (x)) \log ^2\left (\frac {10 x^4 (1+x)}{x+\log (x)}\right )} \, dx+\int \frac {e^x}{x (x+\log (x)) \log ^2\left (\frac {10 x^4 (1+x)}{x+\log (x)}\right )} \, dx-\int \frac {e^x}{(1+x) (x+\log (x)) \log ^2\left (\frac {10 x^4 (1+x)}{x+\log (x)}\right )} \, dx+\int \frac {e^x}{\log \left (\frac {10 x^4 (1+x)}{x+\log (x)}\right )} \, dx \\ \end{align*}

Mathematica [A] (verified)

Time = 0.11 (sec) , antiderivative size = 21, normalized size of antiderivative = 0.91 \[ \int \frac {e^x \left (1-2 x-4 x^2\right )+e^x (-4-5 x) \log (x)+\left (e^x \left (x^2+x^3\right )+e^x \left (x+x^2\right ) \log (x)\right ) \log \left (\frac {10 x^4+10 x^5}{x+\log (x)}\right )}{\left (x^2+x^3+\left (x+x^2\right ) \log (x)\right ) \log ^2\left (\frac {10 x^4+10 x^5}{x+\log (x)}\right )} \, dx=\frac {e^x}{\log \left (\frac {10 x^4 (1+x)}{x+\log (x)}\right )} \]

[In]

Integrate[(E^x*(1 - 2*x - 4*x^2) + E^x*(-4 - 5*x)*Log[x] + (E^x*(x^2 + x^3) + E^x*(x + x^2)*Log[x])*Log[(10*x^
4 + 10*x^5)/(x + Log[x])])/((x^2 + x^3 + (x + x^2)*Log[x])*Log[(10*x^4 + 10*x^5)/(x + Log[x])]^2),x]

[Out]

E^x/Log[(10*x^4*(1 + x))/(x + Log[x])]

Maple [C] (warning: unable to verify)

Result contains higher order function than in optimal. Order 9 vs. order 3.

Time = 51.94 (sec) , antiderivative size = 441, normalized size of antiderivative = 19.17

method result size
risch \(\frac {2 i {\mathrm e}^{x}}{\pi \,\operatorname {csgn}\left (i x^{3}\right ) \operatorname {csgn}\left (i x^{4}\right ) \operatorname {csgn}\left (i x \right )+2 i \ln \left (1+x \right )+2 i \ln \left (2\right )+2 i \ln \left (5\right )+\pi \operatorname {csgn}\left (i x^{2}\right )^{3}+\pi \,\operatorname {csgn}\left (i x^{4}\right ) \operatorname {csgn}\left (\frac {i \left (1+x \right )}{x +\ln \left (x \right )}\right ) \operatorname {csgn}\left (\frac {i x^{4} \left (1+x \right )}{x +\ln \left (x \right )}\right )+\pi \,\operatorname {csgn}\left (\frac {i}{x +\ln \left (x \right )}\right ) \operatorname {csgn}\left (\frac {i \left (1+x \right )}{x +\ln \left (x \right )}\right ) \operatorname {csgn}\left (i \left (1+x \right )\right )-\pi \,\operatorname {csgn}\left (i x^{3}\right ) \operatorname {csgn}\left (i x^{4}\right )^{2}-\pi \operatorname {csgn}\left (i x^{4}\right )^{2} \operatorname {csgn}\left (i x \right )+8 i \ln \left (x \right )+\pi \operatorname {csgn}\left (i x \right )^{2} \operatorname {csgn}\left (i x^{2}\right )-2 \pi \,\operatorname {csgn}\left (i x \right ) \operatorname {csgn}\left (i x^{2}\right )^{2}+\pi \operatorname {csgn}\left (i x^{4}\right )^{3}+\pi \operatorname {csgn}\left (\frac {i x^{4} \left (1+x \right )}{x +\ln \left (x \right )}\right )^{3}-\pi \,\operatorname {csgn}\left (\frac {i}{x +\ln \left (x \right )}\right ) \operatorname {csgn}\left (\frac {i \left (1+x \right )}{x +\ln \left (x \right )}\right )^{2}-\pi \operatorname {csgn}\left (\frac {i \left (1+x \right )}{x +\ln \left (x \right )}\right )^{2} \operatorname {csgn}\left (i \left (1+x \right )\right )-\pi \,\operatorname {csgn}\left (i x^{4}\right ) \operatorname {csgn}\left (\frac {i x^{4} \left (1+x \right )}{x +\ln \left (x \right )}\right )^{2}-\pi \,\operatorname {csgn}\left (\frac {i \left (1+x \right )}{x +\ln \left (x \right )}\right ) \operatorname {csgn}\left (\frac {i x^{4} \left (1+x \right )}{x +\ln \left (x \right )}\right )^{2}-\pi \,\operatorname {csgn}\left (i x \right ) \operatorname {csgn}\left (i x^{3}\right )^{2}-\pi \,\operatorname {csgn}\left (i x^{2}\right ) \operatorname {csgn}\left (i x^{3}\right )^{2}+\pi \operatorname {csgn}\left (\frac {i \left (1+x \right )}{x +\ln \left (x \right )}\right )^{3}+\pi \,\operatorname {csgn}\left (i x \right ) \operatorname {csgn}\left (i x^{2}\right ) \operatorname {csgn}\left (i x^{3}\right )-2 i \ln \left (x +\ln \left (x \right )\right )+\pi \operatorname {csgn}\left (i x^{3}\right )^{3}}\) \(441\)

[In]

int((((x^2+x)*exp(x)*ln(x)+(x^3+x^2)*exp(x))*ln((10*x^5+10*x^4)/(x+ln(x)))+(-5*x-4)*exp(x)*ln(x)+(-4*x^2-2*x+1
)*exp(x))/((x^2+x)*ln(x)+x^3+x^2)/ln((10*x^5+10*x^4)/(x+ln(x)))^2,x,method=_RETURNVERBOSE)

[Out]

2*I*exp(x)/(Pi*csgn(I*x^3)*csgn(I*x^4)*csgn(I*x)+2*I*ln(1+x)+2*I*ln(2)+2*I*ln(5)+Pi*csgn(I*x^2)^3+Pi*csgn(I*x^
4)*csgn(I*(1+x)/(x+ln(x)))*csgn(I*x^4/(x+ln(x))*(1+x))+Pi*csgn(I/(x+ln(x)))*csgn(I*(1+x)/(x+ln(x)))*csgn(I*(1+
x))-Pi*csgn(I*x^3)*csgn(I*x^4)^2-Pi*csgn(I*x^4)^2*csgn(I*x)+8*I*ln(x)+Pi*csgn(I*x)^2*csgn(I*x^2)-2*Pi*csgn(I*x
)*csgn(I*x^2)^2+Pi*csgn(I*x^4)^3+Pi*csgn(I*x^4/(x+ln(x))*(1+x))^3-Pi*csgn(I/(x+ln(x)))*csgn(I*(1+x)/(x+ln(x)))
^2-Pi*csgn(I*(1+x)/(x+ln(x)))^2*csgn(I*(1+x))-Pi*csgn(I*x^4)*csgn(I*x^4/(x+ln(x))*(1+x))^2-Pi*csgn(I*(1+x)/(x+
ln(x)))*csgn(I*x^4/(x+ln(x))*(1+x))^2-Pi*csgn(I*x)*csgn(I*x^3)^2-Pi*csgn(I*x^2)*csgn(I*x^3)^2+Pi*csgn(I*(1+x)/
(x+ln(x)))^3+Pi*csgn(I*x)*csgn(I*x^2)*csgn(I*x^3)-2*I*ln(x+ln(x))+Pi*csgn(I*x^3)^3)

Fricas [A] (verification not implemented)

none

Time = 0.26 (sec) , antiderivative size = 21, normalized size of antiderivative = 0.91 \[ \int \frac {e^x \left (1-2 x-4 x^2\right )+e^x (-4-5 x) \log (x)+\left (e^x \left (x^2+x^3\right )+e^x \left (x+x^2\right ) \log (x)\right ) \log \left (\frac {10 x^4+10 x^5}{x+\log (x)}\right )}{\left (x^2+x^3+\left (x+x^2\right ) \log (x)\right ) \log ^2\left (\frac {10 x^4+10 x^5}{x+\log (x)}\right )} \, dx=\frac {e^{x}}{\log \left (\frac {10 \, {\left (x^{5} + x^{4}\right )}}{x + \log \left (x\right )}\right )} \]

[In]

integrate((((x^2+x)*exp(x)*log(x)+(x^3+x^2)*exp(x))*log((10*x^5+10*x^4)/(x+log(x)))+(-5*x-4)*exp(x)*log(x)+(-4
*x^2-2*x+1)*exp(x))/((x^2+x)*log(x)+x^3+x^2)/log((10*x^5+10*x^4)/(x+log(x)))^2,x, algorithm="fricas")

[Out]

e^x/log(10*(x^5 + x^4)/(x + log(x)))

Sympy [A] (verification not implemented)

Time = 0.37 (sec) , antiderivative size = 19, normalized size of antiderivative = 0.83 \[ \int \frac {e^x \left (1-2 x-4 x^2\right )+e^x (-4-5 x) \log (x)+\left (e^x \left (x^2+x^3\right )+e^x \left (x+x^2\right ) \log (x)\right ) \log \left (\frac {10 x^4+10 x^5}{x+\log (x)}\right )}{\left (x^2+x^3+\left (x+x^2\right ) \log (x)\right ) \log ^2\left (\frac {10 x^4+10 x^5}{x+\log (x)}\right )} \, dx=\frac {e^{x}}{\log {\left (\frac {10 x^{5} + 10 x^{4}}{x + \log {\left (x \right )}} \right )}} \]

[In]

integrate((((x**2+x)*exp(x)*ln(x)+(x**3+x**2)*exp(x))*ln((10*x**5+10*x**4)/(x+ln(x)))+(-5*x-4)*exp(x)*ln(x)+(-
4*x**2-2*x+1)*exp(x))/((x**2+x)*ln(x)+x**3+x**2)/ln((10*x**5+10*x**4)/(x+ln(x)))**2,x)

[Out]

exp(x)/log((10*x**5 + 10*x**4)/(x + log(x)))

Maxima [A] (verification not implemented)

none

Time = 0.35 (sec) , antiderivative size = 25, normalized size of antiderivative = 1.09 \[ \int \frac {e^x \left (1-2 x-4 x^2\right )+e^x (-4-5 x) \log (x)+\left (e^x \left (x^2+x^3\right )+e^x \left (x+x^2\right ) \log (x)\right ) \log \left (\frac {10 x^4+10 x^5}{x+\log (x)}\right )}{\left (x^2+x^3+\left (x+x^2\right ) \log (x)\right ) \log ^2\left (\frac {10 x^4+10 x^5}{x+\log (x)}\right )} \, dx=\frac {e^{x}}{\log \left (5\right ) + \log \left (2\right ) - \log \left (x + \log \left (x\right )\right ) + \log \left (x + 1\right ) + 4 \, \log \left (x\right )} \]

[In]

integrate((((x^2+x)*exp(x)*log(x)+(x^3+x^2)*exp(x))*log((10*x^5+10*x^4)/(x+log(x)))+(-5*x-4)*exp(x)*log(x)+(-4
*x^2-2*x+1)*exp(x))/((x^2+x)*log(x)+x^3+x^2)/log((10*x^5+10*x^4)/(x+log(x)))^2,x, algorithm="maxima")

[Out]

e^x/(log(5) + log(2) - log(x + log(x)) + log(x + 1) + 4*log(x))

Giac [A] (verification not implemented)

none

Time = 0.42 (sec) , antiderivative size = 23, normalized size of antiderivative = 1.00 \[ \int \frac {e^x \left (1-2 x-4 x^2\right )+e^x (-4-5 x) \log (x)+\left (e^x \left (x^2+x^3\right )+e^x \left (x+x^2\right ) \log (x)\right ) \log \left (\frac {10 x^4+10 x^5}{x+\log (x)}\right )}{\left (x^2+x^3+\left (x+x^2\right ) \log (x)\right ) \log ^2\left (\frac {10 x^4+10 x^5}{x+\log (x)}\right )} \, dx=\frac {e^{x}}{\log \left (10 \, x + 10\right ) - \log \left (x + \log \left (x\right )\right ) + 4 \, \log \left (x\right )} \]

[In]

integrate((((x^2+x)*exp(x)*log(x)+(x^3+x^2)*exp(x))*log((10*x^5+10*x^4)/(x+log(x)))+(-5*x-4)*exp(x)*log(x)+(-4
*x^2-2*x+1)*exp(x))/((x^2+x)*log(x)+x^3+x^2)/log((10*x^5+10*x^4)/(x+log(x)))^2,x, algorithm="giac")

[Out]

e^x/(log(10*x + 10) - log(x + log(x)) + 4*log(x))

Mupad [B] (verification not implemented)

Time = 17.33 (sec) , antiderivative size = 24, normalized size of antiderivative = 1.04 \[ \int \frac {e^x \left (1-2 x-4 x^2\right )+e^x (-4-5 x) \log (x)+\left (e^x \left (x^2+x^3\right )+e^x \left (x+x^2\right ) \log (x)\right ) \log \left (\frac {10 x^4+10 x^5}{x+\log (x)}\right )}{\left (x^2+x^3+\left (x+x^2\right ) \log (x)\right ) \log ^2\left (\frac {10 x^4+10 x^5}{x+\log (x)}\right )} \, dx=\frac {{\mathrm {e}}^x}{\ln \left (\frac {10\,x^5+10\,x^4}{x+\ln \left (x\right )}\right )} \]

[In]

int(-(exp(x)*(2*x + 4*x^2 - 1) - log((10*x^4 + 10*x^5)/(x + log(x)))*(exp(x)*(x^2 + x^3) + exp(x)*log(x)*(x +
x^2)) + exp(x)*log(x)*(5*x + 4))/(log((10*x^4 + 10*x^5)/(x + log(x)))^2*(x^2 + x^3 + log(x)*(x + x^2))),x)

[Out]

exp(x)/log((10*x^4 + 10*x^5)/(x + log(x)))